Quasi-norm local error estimators for p-Laplacian (Q2706405)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quasi-norm local error estimators for p-Laplacian |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quasi-norm local error estimators for p-Laplacian |
scientific article |
Statements
19 March 2001
0 references
nonlinear Laplacian
0 references
finite elements
0 references
a posteriori error estimates
0 references
quasi-norm error bounds
0 references
adaptive grid refinement
0 references
numerical results
0 references
Quasi-norm local error estimators for p-Laplacian (English)
0 references
The authors consider the piecewise linear finite element approximation of the \(p\)-Laplacian NEWLINE\[NEWLINE -\text{div} (|\nabla u|^{p-2} \nabla u) =f NEWLINE\]NEWLINE subject to Dirichlet boundary conditions in a domain \(\Omega \subset \mathbb{R}^n\), \(n=1, 2,\) or \(3\). The variational formulation of the problem leads to a monotone operator in \(L^p(\Omega)\) for \(p \in (1,\infty)\). In order to obtain sharp error bounds as a base of an adaptive grid refinement the authors use the quasi-norm defined by NEWLINE\[NEWLINE \|v \|^\rho_{(w,p)}:= \int_{\Omega} |\nabla v|^{2}(|\nabla u|+|\nabla v|)^{p-2}, NEWLINE\]NEWLINE where \(\rho:= \max\{2,p \}\). The theoretical analysis is complemented by numerical results.
0 references