The stability of the generalized form for the gamma functional equation (Q2706484)

From MaRDI portal





scientific article
Language Label Description Also known as
English
The stability of the generalized form for the gamma functional equation
scientific article

    Statements

    0 references
    0 references
    19 March 2001
    0 references
    Gamma functional equation
    0 references
    stability
    0 references
    The stability of the generalized form for the gamma functional equation (English)
    0 references
    The authors consider the functional equation NEWLINE\[NEWLINE f(x+p)=\varphi(x)f(x), \qquad x \in (0, \infty), \tag \(*\) NEWLINE\]NEWLINE where \(f:(0,\infty) \to \mathbb R\) and \(p\) is a fixed natural number. They prove the following stability theorem. NEWLINENEWLINENEWLINETheorem: Let \(g:(0,\infty) \to \mathbb R\) satisfy the inequality NEWLINE\[NEWLINE |g(x+p)-\varphi(x)g(x)|\leq \phi(x), \quad x>0, NEWLINE\]NEWLINE where \(\varphi, \phi:(0,\infty) \to (0,\infty)\) are mappings such that NEWLINE\[NEWLINE \Phi(x)=\sum_{j=0}^{\infty} \phi(x+jp) \prod_{i=0}^j \frac{1}{\varphi(x+ip)}<\infty, \quad x>0. NEWLINE\]NEWLINE Then there exists a unique function \(f:(0,\infty) \to \mathbb R\), solution of (*), with NEWLINE\[NEWLINE |g(x)-f(x)|\leq \Phi(x), \qquad x>0 .NEWLINE\]
    0 references

    Identifiers