Unconditional basis in Bargmann space -- new proof of Gröchenig-Walnut theorem (Q2706842)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Unconditional basis in Bargmann space -- new proof of Gröchenig-Walnut theorem |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Unconditional basis in Bargmann space -- new proof of Gröchenig-Walnut theorem |
scientific article |
Statements
15 July 2001
0 references
Bargmann spaces
0 references
unconditional bases
0 references
Gabor frames
0 references
Wilson bases
0 references
Gröchenig-Walnut theorem
0 references
unconditional basis
0 references
Unconditional basis in Bargmann space -- new proof of Gröchenig-Walnut theorem (English)
0 references
The Bargmann space \(A^p(\mathbb C)\) is defined as follows: NEWLINE\[NEWLINEA^p(\mathbb C)=\biggl\{ f \text{ entire}:\int_{\mathbb C}|f(z)e^{-\pi|z|^2/2}|^p d\lambda(z) <\infty \biggr\},\quad 1\leq p<\infty, NEWLINE\]NEWLINE endowed with the natural norm NEWLINE\[NEWLINE \|f\|_{A^p(\mathbb C)}=\biggl(\int_{\mathbb C}|f(z) e^{-\pi|z|^2/2}|^p d\lambda(z)\biggr)^{1/p}. NEWLINE\]NEWLINE In this paper a new and short proof for the Gröchenig-Walnut theorem giving an unconditional basis in \(A^p(\mathbb C)\) is shown. This proof omits the use of Zak transform exploited in the original proof.
0 references