The Hausdorff dimension of recurrent sets in symbolic spaces (Q2707004)

From MaRDI portal





scientific article
Language Label Description Also known as
English
The Hausdorff dimension of recurrent sets in symbolic spaces
scientific article

    Statements

    The Hausdorff dimension of recurrent sets in symbolic spaces (English)
    0 references
    0 references
    0 references
    0 references
    27 May 2002
    0 references
    shift space
    0 references
    Hausdorff dimension
    0 references
    Cantor set
    0 references
    Let \((\Sigma,\sigma)\) be the one-sided shift space on \(N\) symbols \(1,2,\dots, N\) \((N\geq 2)\) with the usual metric \(d(x,y)= N^{-\inf\{k\geq 0: x_{k+1}\neq y_{k+1}\}}\) for \(x= (x_i)^\infty_{i=1}\) and \(y= (y_i)^\infty_{i=1}\). For any \(x= (x_i)^\infty_{i=1}\in \Sigma\) and positive integer \(n\) define NEWLINE\[NEWLINER_n(x)= \inf\{j\geq n: x_1\times x_2\cdots\times x_n= x_{j+1} x_{j+2}\times\cdots\times x_{j+n}\}.NEWLINE\]NEWLINE The authors show that for any \(\alpha,\beta\in [0,\infty]\) with \(\alpha\leq\beta\) the Hausdorff dimension of the set \(E_{\alpha,\beta}\) defined by NEWLINE\[NEWLINEE_{\alpha,\beta}= \Biggl\{x\in \Sigma: \liminf_{n\to\infty} {\log R_n(x)\over n}= \alpha,\;\limsup_{n\to\infty} {\log R_n(x)\over n}= \beta\Biggr\}NEWLINE\]NEWLINE is equal to one. To this end the authors construct Cantor-like subsets of \(E_{\alpha,\beta}\) so that their Hausdorff dimensions converge to one.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references