Combinatorial diophantine equations (Q2707221)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Combinatorial diophantine equations |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Combinatorial diophantine equations |
scientific article |
Statements
1 April 2001
0 references
combinatorial numbers
0 references
combinatorial diophantine equation
0 references
elliptic curve
0 references
Combinatorial diophantine equations (English)
0 references
For a positive integer \(k\) let \(P_k(x)=x(x+1)\ldots (x+k-1)\) and \(S_k(x)=1^k+2^k+\ldots +x^k\). In the paper the following Diophantine equations are solved (or resolved):NEWLINENEWLINENEWLINE\(P_6(x)=P_4(y)\), \(P_6(x)={y\choose 2}\), \(P_6(x)={y\choose 4}\), \({x\choose 3}=P_2(y)\), \({x\choose 3}=P_4(y)\), \({x\choose 6}=P_2(y)\), \({x\choose 6}=P_4(y)\), \({x\choose 6}={y\choose 2}\), \({x\choose 6}={y\choose 4}\), \(S_2(x)=P_2(y)\), \(S_2(x)=P_4(y)\), \(S_5(x)=P_2(y)\), \(S_5(x)=P_4(y)\), \(S_5(x)={y\choose 2}\), \(S_5(x)={y\choose 4}\).NEWLINENEWLINENEWLINEThe equations are reduced to elliptic equations and then the program package SIMATH is used to determine the solutions. An algorithm for finding the integer solutions of the equation \({x\choose 6}={y\choose 2}\) is illustrated, too.
0 references