Semilinear elliptic problems on unbounded subsets of the Heisenberg group (Q2707301)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Semilinear elliptic problems on unbounded subsets of the Heisenberg group
scientific article

    Statements

    0 references
    9 May 2001
    0 references
    Heisenberg group
    0 references
    unbounded domain
    0 references
    concentration compactness
    0 references
    Semilinear elliptic problems on unbounded subsets of the Heisenberg group (English)
    0 references
    The author studies the existence of solutions for a Dirichlet problem of the equation NEWLINE\[NEWLINE-\Delta_H u=f(u)\tag{1}NEWLINE\]NEWLINE on a (generally unbounded) domain of \(H^N\), where \(H^N\) be the space \(\mathbb{R}^N \times\mathbb{R}^N \times\mathbb{R}\) equipped with group operation NEWLINE\[NEWLINE\eta=(\alpha, \beta,\tau),\quad \eta\cdot \eta'=\bigl( \alpha +\alpha', \beta+\beta', \tau+\tau'+ 2(\alpha\beta'- \beta\alpha') \bigr)\tag{2}NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\Delta_H= \sum^N_{i=1} \partial^2_{x_i} +\partial^2_{y_i} +4y_i \partial_{x_i} \partial_t- 4x_i\partial y_i\partial_t +4(x_i^2+y_i^2) \partial_t^2. \tag{3}NEWLINE\]NEWLINE The author proves the existence of (1). To this end he uses an abstract version of concentration compactness approach taking into account noncompactness cases.
    0 references

    Identifiers