Semilinear elliptic problems on unbounded subsets of the Heisenberg group (Q2707301)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Semilinear elliptic problems on unbounded subsets of the Heisenberg group |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Semilinear elliptic problems on unbounded subsets of the Heisenberg group |
scientific article |
Statements
9 May 2001
0 references
Heisenberg group
0 references
unbounded domain
0 references
concentration compactness
0 references
0.9479871
0 references
0.9366298
0 references
0.93134975
0 references
0.9312608
0 references
0.9300307
0 references
0.91989595
0 references
0.9171035
0 references
Semilinear elliptic problems on unbounded subsets of the Heisenberg group (English)
0 references
The author studies the existence of solutions for a Dirichlet problem of the equation NEWLINE\[NEWLINE-\Delta_H u=f(u)\tag{1}NEWLINE\]NEWLINE on a (generally unbounded) domain of \(H^N\), where \(H^N\) be the space \(\mathbb{R}^N \times\mathbb{R}^N \times\mathbb{R}\) equipped with group operation NEWLINE\[NEWLINE\eta=(\alpha, \beta,\tau),\quad \eta\cdot \eta'=\bigl( \alpha +\alpha', \beta+\beta', \tau+\tau'+ 2(\alpha\beta'- \beta\alpha') \bigr)\tag{2}NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\Delta_H= \sum^N_{i=1} \partial^2_{x_i} +\partial^2_{y_i} +4y_i \partial_{x_i} \partial_t- 4x_i\partial y_i\partial_t +4(x_i^2+y_i^2) \partial_t^2. \tag{3}NEWLINE\]NEWLINE The author proves the existence of (1). To this end he uses an abstract version of concentration compactness approach taking into account noncompactness cases.
0 references