Sharp Sobolev embeddings and related Hardy inequalities (Q2707668)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sharp Sobolev embeddings and related Hardy inequalities |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sharp Sobolev embeddings and related Hardy inequalities |
scientific article |
Statements
3 April 2001
0 references
fractional Sobolev spaces
0 references
Besov spaces
0 references
Lorentz-Zygmund spaces
0 references
sharp embeddings
0 references
Hardy's inequality
0 references
Sharp Sobolev embeddings and related Hardy inequalities (English)
0 references
The paper surveys some results on sharp Sobolev embeddings and corresponding Hardy-type inequalities in the critical case. More precisely, let \(1<p<\infty \), \(s=n/p\), and let \(A_p\) stand either for the fractional Sobolev space \(H^s_p(\mathbb R^n)\) or the Besov space \(B^s_{p,p}(\mathbb R^n)\). Suppose that \(\kappa \: (0,1] \rightarrow \mathbb R\) is positive, continuous and decreasing. The main result of the paper states that the following statements are equivalent: NEWLINENEWLINENEWLINE(i) \(\int ^1_0 (\frac {\kappa (t)f^*(t)}{1+|\log t|})^p \frac {dt}{t} \lesssim \|f|A_p\|^p \quad \text{for all} \;f\in A_p\); NEWLINENEWLINENEWLINE(ii) \(\int _{|x|<1} (\frac {\kappa (|x|)f(x)}{1+|\log |x\|})^p \frac {dx}{|x|^n} \lesssim \|f|A_p \|^p \quad \text{for all} \;f\in A_p\); NEWLINENEWLINENEWLINE(iii) \(\kappa \) is bounded.NEWLINENEWLINEFor the entire collection see [Zbl 0933.00035].
0 references