Inequalities for the Hurwitz zeta function (Q2708151)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Inequalities for the Hurwitz zeta function |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Inequalities for the Hurwitz zeta function |
scientific article |
Statements
Inequalities for the Hurwitz zeta function (English)
0 references
12 November 2002
0 references
Hurwitz zeta-function
0 references
subadditive function
0 references
superadditive function
0 references
submultiplicative function
0 references
supermultiplicative function
0 references
star-shaped function
0 references
0.7387333
0 references
0.7385937
0 references
0.7262146
0 references
0.7104685
0 references
0.71032214
0 references
0.70884514
0 references
0.7028866
0 references
0.7010883
0 references
Let us denote the Hurwitz zeta-function by \(\zeta_p (x)=\sum_{k=0}^\infty 1/(x+k)^p\), where \(\Re p>1\) and \(x>0\). \textit{S. Y. Trimble, J. Wells} and \textit{F. T. Wright} [SIAM J. Math. Anal. 20, 1255-1259 (1989; Zbl 0688.44002)] showed that for all real numbers \(p\geq 2\) the function \(x\to 1/\zeta_p(x)\) is strictly superadditive on \((0, \infty)\); that is, \(1/\zeta_p(x)+1/\zeta_p(y)<1/\zeta_p(x+y)\). Let \(p>1\) and \(\alpha\neq 0\) be real numbers and \(n\geq 2\) be an integer. In the paper under review the author determines the best possible constants \(a(p,\alpha, n)\), \(A(p,\alpha, n)\), \(b(p, n)\) and \(B(p, n)\) such that the inequalities NEWLINE\[NEWLINEa(p,\alpha, n)<\left(\zeta_p\left(\sum_{k=1}^n x_k\right)\right)^\alpha\bigg/ \sum_{k=1}^n\left(\zeta_p\left( x_k\right)\right)^\alpha<A(p,\alpha, n)NEWLINE\]NEWLINE and NEWLINE\[NEWLINEb(p, n)<\zeta_p\left(\sum_{k=1}^n x_k\right)\bigg/ \sum_{k=1}^n\zeta_p\left( x_k\right)<B(p, n)NEWLINE\]NEWLINE hold for all positive numbers \(x_1,\dots,x_n\). Using these inequalities he considers subadditive and submultiplicative properties of the Hurwitz zeta-function.
0 references