Inequalities for the Hurwitz zeta function (Q2708151)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Inequalities for the Hurwitz zeta function
scientific article

    Statements

    Inequalities for the Hurwitz zeta function (English)
    0 references
    0 references
    12 November 2002
    0 references
    Hurwitz zeta-function
    0 references
    subadditive function
    0 references
    superadditive function
    0 references
    submultiplicative function
    0 references
    supermultiplicative function
    0 references
    star-shaped function
    0 references
    Let us denote the Hurwitz zeta-function by \(\zeta_p (x)=\sum_{k=0}^\infty 1/(x+k)^p\), where \(\Re p>1\) and \(x>0\). \textit{S. Y. Trimble, J. Wells} and \textit{F. T. Wright} [SIAM J. Math. Anal. 20, 1255-1259 (1989; Zbl 0688.44002)] showed that for all real numbers \(p\geq 2\) the function \(x\to 1/\zeta_p(x)\) is strictly superadditive on \((0, \infty)\); that is, \(1/\zeta_p(x)+1/\zeta_p(y)<1/\zeta_p(x+y)\). Let \(p>1\) and \(\alpha\neq 0\) be real numbers and \(n\geq 2\) be an integer. In the paper under review the author determines the best possible constants \(a(p,\alpha, n)\), \(A(p,\alpha, n)\), \(b(p, n)\) and \(B(p, n)\) such that the inequalities NEWLINE\[NEWLINEa(p,\alpha, n)<\left(\zeta_p\left(\sum_{k=1}^n x_k\right)\right)^\alpha\bigg/ \sum_{k=1}^n\left(\zeta_p\left( x_k\right)\right)^\alpha<A(p,\alpha, n)NEWLINE\]NEWLINE and NEWLINE\[NEWLINEb(p, n)<\zeta_p\left(\sum_{k=1}^n x_k\right)\bigg/ \sum_{k=1}^n\zeta_p\left( x_k\right)<B(p, n)NEWLINE\]NEWLINE hold for all positive numbers \(x_1,\dots,x_n\). Using these inequalities he considers subadditive and submultiplicative properties of the Hurwitz zeta-function.
    0 references

    Identifiers