On a nonlinear elliptic problem with singular diffusion and right hand side in \(L^1\) (Q2708189)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On a nonlinear elliptic problem with singular diffusion and right hand side in \(L^1\)
scientific article

    Statements

    24 November 2002
    0 references
    diffusion matrix
    0 references
    renormalized solution
    0 references
    uniqueness
    0 references
    On a nonlinear elliptic problem with singular diffusion and right hand side in \(L^1\) (English)
    0 references
    The authors study the following nonlinear elliptic problem: NEWLINE\[NEWLINE \begin{cases} w\nabla u-\nabla \biggl[\bigl( B_1+B_2a(u) \bigr)\nabla u\biggr]+ g(x,u)= f \quad &\text{in }\Omega\\ u=0\quad & \text{on } \partial\Omega \end{cases} \tag{1}NEWLINE\]NEWLINE where \(\Omega\subset\mathbb{R}^N\) be a bounded domain, \(w\in [L^2 (\Omega)]^N\), \(f \in L^1(\Omega)\), \(g:\Omega \times\mathbb{R}\to\mathbb{R}\) are given data, and \(\lim_{s\to s^+_0} a(s)=+\infty\), \(s_0\in\mathbb{R}\setminus \{0\}\). Under some natural conditions on the matrix diffusion coefficient, the authors introduce the concept of renormalized solution for (1) and prove existence of it. However they prove uniqueness of renormalized solutions under more restrictive assumptions.
    0 references

    Identifiers