Primitive idempotents of the group algebra \(\mathbb{C}\text{SL}(2,q)\) (Q2708423)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Primitive idempotents of the group algebra \(\mathbb{C}\text{SL}(2,q)\) |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Primitive idempotents of the group algebra \(\mathbb{C}\text{SL}(2,q)\) |
scientific article |
Statements
17 April 2001
0 references
primitive idempotents
0 references
complex group algebras
0 references
Primitive idempotents of the group algebra \(\mathbb{C}\text{SL}(2,q)\) (English)
0 references
Let \(p\) be an odd prime number and \(F_q\) be a finite field of order \(q=p^s\) (\(s\geq 1\)). Let \(G=\text{SL}(2,q)\) denote the group of all \(2\times 2\) matrices over \(F_q\) with determinant one. Using a result of \textit{G. J. Janusz} [Proc. Am. Math. Soc. 17, 520-523 (1966; Zbl 0151.02203)], the author finds a system of primitive idempotents of the complex group algebra \(\mathbb{C} G\).
0 references