Grüss-Lupas type inequality and its applications for the estimation of \(p\)-moments of guessing mappings (Q2708489)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Grüss-Lupas type inequality and its applications for the estimation of \(p\)-moments of guessing mappings
scientific article

    Statements

    0 references
    4 February 2002
    0 references
    inequalities for sums
    0 references
    Grüss-Lupaş type inequality
    0 references
    guessing mapping
    0 references
    information theory
    0 references
    Grüss-Lupas type inequality and its applications for the estimation of \(p\)-moments of guessing mappings (English)
    0 references
    Let \((X,\|\cdot\|)\) be a normed space and let \(x_i\in X\), \(a_i, p_i\in K\) with \(p_i\geq 0\), \(\sum^n_{i=1} p_i= 1\) \((i= 1,\dots, n)\). Then NEWLINE\[NEWLINE\Biggl\|\sum^n_{i=1} p_i a_i x_i- \sum^n_{i=1} p_i a_i\cdot \sum^n_{i=1} p_i x_i\Biggr\|\leq\max|a_{j+ 1}- a_j|\max\|x_{j+1}- x_j\|\cdot \Biggl[\sum^n_{i=1} i^2 p_i- \Biggl(\sum^n_{i=1} ip_i\Biggr)^2\Biggr].NEWLINE\]NEWLINE This is a Grüss-Lupaş type inequality in normed spaces. The authors give also certain applications for the \(p\)-moments of the so-called guessing mapping of information theory.
    0 references

    Identifiers