On some classes of differential operators generating analytic semigroups (Q2708556)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On some classes of differential operators generating analytic semigroups
scientific article

    Statements

    0 references
    0 references
    0 references
    13 July 2001
    0 references
    analyticity
    0 references
    \(C_0\)-semigroups
    0 references
    Wentzell domain
    0 references
    Timmermans domain
    0 references
    On some classes of differential operators generating analytic semigroups (English)
    0 references
    The authors give a systematic study of the analyticity of the \(C_0\)-semigroups generated by NEWLINE\[NEWLINEAu:= \alpha u''+\beta u'NEWLINE\]NEWLINE with the so-called Wentzell domain \(D(V)= \{u\in C[0,1]\cap C^2(0,1):\lim_{x\to j} Au(x)= 0\) for \(j= 0,1\}\), or Timmermans domain \(D(T):= \{u\in C[0,1]\cap C^2(0,1): \lim_{x\to j} Au(x)\in \mathbb{R}\) for \(j= 0,1\}\), or else \(D(N):= \{u\in C[0,1]\cap C^2(0,1): \alpha u'\in C^1[0,1]\), \(\lim_{x\to 0,1} \alpha(x) u'(x)= 0\}\).NEWLINENEWLINENEWLINEUnder different verifiable conditions on the functions \(\alpha\), \(\beta\), the authors prove that \((A,D(V))= (A,D(T))\) and it generates an analytic semigroup on \(C[0,1]\) (and in some cases, \(D(V)= D(T)= D(N)\)).NEWLINENEWLINEFor the entire collection see [Zbl 0957.00037].
    0 references

    Identifiers