\(\mathbf{PG}=\mathbf{BG}\): redux (Q2709047)

From MaRDI portal





scientific article
Language Label Description Also known as
English
\(\mathbf{PG}=\mathbf{BG}\): redux
scientific article

    Statements

    0 references
    7 April 2002
    0 references
    inverse automata
    0 references
    profinite topologies
    0 references
    Malcev products
    0 references
    \(\mathcal J\)-trivial semigroups
    0 references
    semidirect products
    0 references
    block groups
    0 references
    power groups
    0 references
    \(\mathbf{PG}=\mathbf{BG}\): redux (English)
    0 references
    This paper serves as a taster for the topological theory of inverse automata of the author. Here, he develops the theory (which makes use of the closure of products of finitely generated subgroups of the free group in the profinite topology) to give a relatively short proof of a theorem of Henckell and Rhodes that every block group (that is, member of the variety generated by Malcev products of \(\mathcal J\)-trivial semigroups and groups) lies in the variety generated by semidirect products of the same pair of classes. -- This is often expressed as \(\text{PG}=\text{BG}\): block groups form the variety generated by power groups.NEWLINENEWLINEFor the entire collection see [Zbl 0954.00028].
    0 references

    Identifiers