A generalization of the Schwarz-Carathéodory reflection principle and spaces of pseudo-metrics (Q2710565)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of the Schwarz-Carathéodory reflection principle and spaces of pseudo-metrics |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of the Schwarz-Carathéodory reflection principle and spaces of pseudo-metrics |
scientific article |
Statements
25 November 2001
0 references
analytic continuation
0 references
0.88373685
0 references
0.8786844
0 references
0.87217665
0 references
A generalization of the Schwarz-Carathéodory reflection principle and spaces of pseudo-metrics (English)
0 references
Let \(\mathbf{D}\) denote the unit disk and let \(\Omega \subset \mathbf{C}\) be a simply connected domain. If \(w(z)\) is analytic in \(\Omega, w(\Omega) \subset \mathbf{D}\), then NEWLINE\[NEWLINE w^*(z)={|w'(z)|\over 1-|w(z)|^2} \qquad (z \in \Omega) NEWLINE\]NEWLINE denotes a pseudo-metric of hyperbolic type.NEWLINENEWLINENEWLINEThe classical Schwarz-Carathéodory reflection principle can be put in the form: Let \(I \subset \partial\Omega\) be an open, analytic and free boundary arc and let \(0 \neq w(z)\) be analytic in \(\Omega\). Then \(w(z)\) is analytic in \(\Omega \cup I\) if, and only if, there exists \(v(z)\), analytic in \(I\), such that NEWLINE\[NEWLINE \lim_{z \rightarrow \zeta} \left|{w(z) \over v(z)}\right|\rightarrow 1 \qquad (\zeta \in I). NEWLINE\]NEWLINE The autors prove a similar statement when \(w(z)\) is replaced by the hyperbolic \(w^*(z)\), and they give structural properties of spaces of pseudo-metrics.
0 references