The maximal operator of Bochner-Riesz means for radial functions (Q2712540)

From MaRDI portal





scientific article
Language Label Description Also known as
English
The maximal operator of Bochner-Riesz means for radial functions
scientific article

    Statements

    0 references
    8 January 2002
    0 references
    maximal operator
    0 references
    Bochner-Riesz means
    0 references
    radial function
    0 references
    Lebesgue space
    0 references
    The maximal operator of Bochner-Riesz means for radial functions (English)
    0 references
    Let NEWLINE\[NEWLINES^\delta_\ast f(x)=\sup_{\varepsilon>0}(2\pi)^{-n} \left|\int_{{\mathbb{R}}^n}(1-|\varepsilon\xi|^2)^\delta_+\hat f(\xi) e^{i\langle x,\xi\rangle} d\xi\right|.NEWLINE\]NEWLINE The author proves that for \(n\geq 2\), \(0<\delta\leq (n-2)/2\) and \(p=2n/(n+1+2\delta)\), then \(S^\delta_\ast\) is of weak type \((p,p)\) on radial functions in \(L^p({\mathbb{R}}^n)\).
    0 references
    0 references

    Identifiers