The maximal operator of Bochner-Riesz means for radial functions (Q2712540)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The maximal operator of Bochner-Riesz means for radial functions |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The maximal operator of Bochner-Riesz means for radial functions |
scientific article |
Statements
8 January 2002
0 references
maximal operator
0 references
Bochner-Riesz means
0 references
radial function
0 references
Lebesgue space
0 references
The maximal operator of Bochner-Riesz means for radial functions (English)
0 references
Let NEWLINE\[NEWLINES^\delta_\ast f(x)=\sup_{\varepsilon>0}(2\pi)^{-n} \left|\int_{{\mathbb{R}}^n}(1-|\varepsilon\xi|^2)^\delta_+\hat f(\xi) e^{i\langle x,\xi\rangle} d\xi\right|.NEWLINE\]NEWLINE The author proves that for \(n\geq 2\), \(0<\delta\leq (n-2)/2\) and \(p=2n/(n+1+2\delta)\), then \(S^\delta_\ast\) is of weak type \((p,p)\) on radial functions in \(L^p({\mathbb{R}}^n)\).
0 references