Ricci flow on Kähler manifolds (Q2712612)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Ricci flow on Kähler manifolds
scientific article

    Statements

    Ricci flow on Kähler manifolds (English)
    0 references
    0 references
    0 references
    8 April 2002
    0 references
    first Chern class
    0 references
    Kähler-Einstein manifold
    0 references
    scalar curvature
    0 references
    Kähler-Ricci flow
    0 references
    Kähler-Einstein metric
    0 references
    bisectional curvature
    0 references
    The Kähler-Ricci flow on a Kähler manifold always has a global solution and such a solution converges to a Kähler-Einstein metric if the first Chern class of the underlying Kähler manifold is zero or negative [\textit{H.-D. Cao}, Invent. Math. 81, 359-372 (1985; Zbl 0574.53042)]. Nevertheless, if the first Chern class is positive, the solution of a Kähler-Ricci flow may not converge to any Kähler-Einstein metric. A natural and interesting problem is whether or not the Kähler-Ricci flow on a compact Kähler-Einstein manifold converges to a Kähler-Einstein metric.NEWLINENEWLINENEWLINEIn this note, the authors announce the following result: Let \(M\) be a Kähler-Einstein manifold with positive scalar curvature. If the initial metric has nonnegative bisectional curvature and the curvature is positive at least at one point, then the Kähler-Ricci flow converges exponentially fast to a Kähler-Einstein metric with constant bisectional curvature.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references