Explicit asymptotically normal estimation of a parameter for some multivariate nonlinear regression problems (Q2713940)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit asymptotically normal estimation of a parameter for some multivariate nonlinear regression problems |
scientific article; zbMATH DE number 1603199
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit asymptotically normal estimation of a parameter for some multivariate nonlinear regression problems |
scientific article; zbMATH DE number 1603199 |
Statements
10 June 2001
0 references
Explicit asymptotically normal estimation of a parameter for some multivariate nonlinear regression problems (English)
0 references
Let a sequence of independent random variables \(X_1,X_2,\dots\) be defined as follows: NEWLINE\[NEWLINE X_i=a_i/\beta_i(\theta)+\sigma_i\xi_i, NEWLINE\]NEWLINE where \(\beta_i(\theta)\) depends on an \(m\)-dimensional parameter \(\theta\) in the following way: NEWLINE\[NEWLINE \beta_i(\theta)=1+\sum_{j=1}^m b_{ji}\theta_j. NEWLINE\]NEWLINE The values \(a_i>0\) and \(b_{ji}\geq 0\) are assumed known, while the values of the parameter \(\theta\) and the variance \(\mathbf{D}X_i\equiv\sigma^2\) are unknown. The random noises \(\xi_1,\dots,\xi_N\) are assumed to be independent, identically distributed random variables with zero mean and unit variance. NEWLINENEWLINENEWLINEThe author considers the problem of estimating the unknown parameter \(\theta\) from the observations \(X_1,\dots,X_N\). An asymptotically normal estimator is found under rather general assumptions. The author makes use of the method developed in a paper of \textit{Yu.Yu. Linke} and \textit{A.I. Sakhanenko} [Sib. Math. J. 41, No. 1, 125-137 (2000); translation from Sib. Mat. Zh. 41, No. 1, 150-163 (2000; Zbl 0943.62025)].
0 references