On stability of two-layer explicit schemes (Q2714022)

From MaRDI portal





scientific article; zbMATH DE number 1603285
Language Label Description Also known as
English
On stability of two-layer explicit schemes
scientific article; zbMATH DE number 1603285

    Statements

    0 references
    0 references
    10 June 2001
    0 references
    compound explicit scheme
    0 references
    two-layer scheme
    0 references
    stability
    0 references
    convergence
    0 references
    On stability of two-layer explicit schemes (English)
    0 references
    The authors continue in studying compound explicit schemes [see \textit{Yu. M. Laevskij} and \textit{P. Banushkina}, Sib. J. 3, No.~2, 165-180 (2000; Zbl 0956.65075)] wherein the authors investigated the questions of convergence and stability of the schemes under consideration.NEWLINENEWLINENEWLINEThe aim of the article under review is to expose conditions for the schemes which guarantee stability with respect to the right-hand of the scheme.NEWLINENEWLINENEWLINEThe following two-layer canonical scheme is considered: NEWLINE\[NEWLINE B\frac{u^{n+1} - u^n}{\Delta t} + Au^n = \varphi^n, NEWLINE\]NEWLINE where \(A\: H\to H\), \(B\: H\to H\) are matrix operators in a Hilbert space~\(H\) of the form NEWLINE\[NEWLINE A = \left( \begin{matrix} A_{11} & A_{12}\\ A_{12}^T & A_{22} \end{matrix} \right), \quad B = \left( \begin{matrix} I_{1} & 0_{12}\\ Q^{-1}RA^T_{12} & Q^{-1} \end{matrix} \right). NEWLINE\]NEWLINE Here \(Q\), \(R\) are operator polynomials, \(\varphi^n = (\varphi^n_1, \varphi^n_2)^T \in H\), \(\varphi_1^n = f_1^n\), and \(\varphi^n_2 = \frac{1}{p} Q^{-1}(P^{p-1}f_2^n + \cdots + Pf_2^{n + (p-2)/p} + f_2^{n + (p-1)/p})\), \(P = I_2 - \tau A_{22}\).NEWLINENEWLINENEWLINEThe following theorem holds:NEWLINENEWLINENEWLINETheorem. Let \(\Delta t\|A_{11}\|_{(1)}\leq 1 - \varepsilon\), \(\varepsilon\in (0,1)\), \(\tau\|A_{22}\|_{(2)}\leq 1\). Then in the case of zero initial data the following inequality holds: NEWLINE\[NEWLINE (Au^m,u^m)\leq \frac{1}{\varepsilon}\sum_{n=0}^{m-1}\Delta t\left( \|f_1^n\|^2 + 4\max_{k=1,\dots, p}\|f_2^{n + (k-1)/p}\|^2_2\right).NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references