Stabilization of linear systems with indeterminate parameters (Q2714562)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stabilization of linear systems with indeterminate parameters |
scientific article; zbMATH DE number 1606997
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stabilization of linear systems with indeterminate parameters |
scientific article; zbMATH DE number 1606997 |
Statements
20 June 2001
0 references
uncertain linear system
0 references
motion stabilization
0 references
robust stabilization
0 references
asymptotic approximation
0 references
0 references
0.94126827
0 references
Stabilization of linear systems with indeterminate parameters (English)
0 references
Following \textit{I. R. Peterson} and \textit{C. V. Hollot} [Automatica 22, No. 4, 397-411 (1986; Zbl 0602.93055)] the author considers a linear system with indefinite parameters NEWLINE\[NEWLINE \begin{gathered} \dot x = \bigg[A_0 + \sum\limits_{i=1}^k A_ir_i(t)\bigg] x+ \bigg[B_0 + \sum\limits_{i=1}^l B_is_i(t)\bigg] u,\\ |r_i(t)|\leq\overline r,\quad i=1,2,\dots,k;\quad \overline r\geq 0,\\ |s_i(t)|\leq\overline s,\quad i=1,2,\dots,l;\quad \overline s\geq 0. \end{gathered}\tag{1} NEWLINE\]NEWLINE Under some assumptions on system (1) the stabilization of its solutions in terms of algebraic Riccati equation is discussed. The expediency of asymptotic approximation applications is shown by the example of an airplane longitudinal motion stabilization.
0 references