Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)) (Q2715676)

From MaRDI portal





scientific article; zbMATH DE number 1599833
Language Label Description Also known as
English
Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\))
scientific article; zbMATH DE number 1599833

    Statements

    0 references
    0 references
    20 May 2001
    0 references
    prime number theorem of Piatetski-Shapiro
    0 references
    exponential sums
    0 references
    Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)) (English)
    0 references
    Let \(\pi_c(x)=\sum _{n\leq x,[n^c]\text{prime}}1\), then the authors prove, that the asymptotic equation \(\pi_c(x)= {x\over c\log c}(1+ o(1))\) \((x\to\infty)\) holds for \(1<c< {2817\over 2426}= 1,16117\dots\).NEWLINENEWLINENEWLINEThis is the so-called prime number theorem of Piatetski-Shapiro for an extended range of the exponent \(c\). The authors use refined estimates for exponential sums.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references