Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)) (Q2715676)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)) |
scientific article; zbMATH DE number 1599833
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)) |
scientific article; zbMATH DE number 1599833 |
Statements
20 May 2001
0 references
prime number theorem of Piatetski-Shapiro
0 references
exponential sums
0 references
Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)) (English)
0 references
Let \(\pi_c(x)=\sum _{n\leq x,[n^c]\text{prime}}1\), then the authors prove, that the asymptotic equation \(\pi_c(x)= {x\over c\log c}(1+ o(1))\) \((x\to\infty)\) holds for \(1<c< {2817\over 2426}= 1,16117\dots\).NEWLINENEWLINENEWLINEThis is the so-called prime number theorem of Piatetski-Shapiro for an extended range of the exponent \(c\). The authors use refined estimates for exponential sums.
0 references