Spaces of Lorentz multipliers (Q2715684)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Spaces of Lorentz multipliers |
scientific article; zbMATH DE number 1599840
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spaces of Lorentz multipliers |
scientific article; zbMATH DE number 1599840 |
Statements
20 May 2001
0 references
multipliers
0 references
convolution operators
0 references
Lorentz spaces
0 references
Lorentz-improving multipliers
0 references
0 references
0.80112636
0 references
0.78030765
0 references
0 references
0.7355454
0 references
Spaces of Lorentz multipliers (English)
0 references
Let \(G\) be an infinite compact abelian group and \(m\) be the normalized Haar measure on \(G\). Given a measurable function \(f\) on \(G\), we put \(m_f(y)=m \{x\in G:|f(x)|>y\}\) for \(y\geq 0\) and \(f^*(t)= \inf\{y >0:m_f(y)\leq t\}\) for \(t\geq 0\). Then, the Lorentz space \(L^{p,q}(G)\) is the space of functions \(f\) for which \(\|f\|^*_{p,q} <\infty\), where NEWLINE\[NEWLINE\|f\|^*_{p,q} =\begin{cases} \left( {q\over p}\int^1_0 \bigl(x^{1/p} f^*(x)\bigr)^q {dx\over x}\right)^{1/q} \quad & \text{if }1\leq p,\;q<\infty\\ \sup_x x^{1/p} f^*(x)\quad & \text{if }1\leq p\leq\infty,\;q=\infty. \end{cases}NEWLINE\]NEWLINE A Lorentz multiplier is defined as a bounded linear map from \(L^{p,q}(G)\) to \(L^{r,s}(G)\), for some \(p,q,r,s\), which commutes with translation. The index \(p'\), conjugate to \(p\), is defined by \(1/p+1/p'=1\).NEWLINENEWLINENEWLINEThe authors study when the spaces \(M(p, q;r,s)\) of Lorentz multipliers from \(L^{p,q}(G)\) to \(L^{r,s}(G)\) are distinct. One of their results is as follows. If \(1<p<\infty\) and \(0<1/s- 1/t\neq 1/r-1/q\), then \(M(p,t; p,s)\neq M(p_1,q; p_1,r)\) if \(p_1\) is either \(p\) or \(p'\). In particular, \(M(p,q;p,r)\) is strictly contained in \(M(p,q;p,t)\) whenever \(1\leq r< \min(t,q)\). They also prove that if \(1<p\), \(r<\infty\) and \(r\neq p\), \(p'\), then \(M(p,t; p,s)\neq M(r,v,r,u)\) when \(s\leq t\), \(u\leq v\).NEWLINENEWLINENEWLINETheir method is based on careful constructions of integral functions belonging to the one space of multipliers but not to the other. These functions are formed of linear combinations of Fejer or Dirichlet kernels [cf. \textit{M. Cowling} and \textit{J. Fournier}, Trans. Am. Math. Soc. 221, 59-95 (1976; Zbl 0331.43007); \textit{R. Hunt}, Enseign. Math. (2) 12, 249-276 (1966; Zbl 0181.40301)].
0 references