Idempotence of \((1,-1)\)-matrices (Q2716661)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Idempotence of \((1,-1)\)-matrices |
scientific article; zbMATH DE number 1599300
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Idempotence of \((1,-1)\)-matrices |
scientific article; zbMATH DE number 1599300 |
Statements
10 September 2001
0 references
sign pattern matrices
0 references
idempotent matrices
0 references
\((1,-1)\)-matrices
0 references
Idempotence of \((1,-1)\)-matrices (English)
0 references
Let \(A\) denote an \(n\)-square sign pattern matrix, and define the \textit{sign pattern class} of \(A\) by \(Q(A) =\{B\in M_n(\mathbb R):\text{sgn }B=A\}\). \(A\) is said to be \textit{sign idempotent} if \(B^2\in Q(A)\) whenever \(B\in Q(A)\). The authors characterize a class of idempotent \((1,-1)\)-matrices that are not sign idempotent thus giving a partial answer to a problem posed by \textit{C. Eschenbach} [Linear Algebra Appl. 180, 153--165 (1993; Zbl 0777.05032)]. This paper is a continuation of the work by \textit{S.-G. Lee} and \textit{S.-W. Park} [Commun. Korean. Math. Soc. 10, No. 3, 561--573 (1995; Zbl 0945.15018)].
0 references