The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument (Q2716977)

From MaRDI portal





scientific article; zbMATH DE number 1599703
Language Label Description Also known as
English
The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument
scientific article; zbMATH DE number 1599703

    Statements

    0 references
    0 references
    29 May 2002
    0 references
    nonlocal Cauchy problem
    0 references
    semilinear integrodifferential equations
    0 references
    deviating argument
    0 references
    semigroup
    0 references
    Banach space
    0 references
    resolvent operator
    0 references
    mild solution
    0 references
    classical solution
    0 references
    existence and uniqueness
    0 references
    method of semigroups
    0 references
    contraction mapping principle
    0 references
    The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument (English)
    0 references
    Let \(A\) be the infinitesimal generator of a strongly continuous semigroup in a Banach space \(X\), \(Z(t)\) a bounded operator for \(t\in [0, T]\), \(T>0\), \(f:[0,T] \times X\to X\), \(g:X^p\to X\), \(p\in N\), be given functions. The authors consider the following integrodifferential equation with a deviating argument and nonlocal condition of the form NEWLINE\[NEWLINEu'(t)=A\bigl( u(t)+\int^t_0 Z(t-s) u(s)ds \bigr)+ f\biggl(t,u\bigl( \sigma(t)\bigr) \biggr), \quad 0\leq t\leq T,\tag{1}NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(0)+g \bigl(u(t_1), \dots,u(t_p) \bigr)=u_0 \tag{2}NEWLINE\]NEWLINE where \(0\leq t_0<t_1< \cdots< t_p\leq T\), \(u_0\in X\), \(\sigma\in C([0,T], [0,T])\), \(\sigma(t)\leq t\), \(t \in [0,T]\). The solution for (1) with \(u(t_0)=u_0\) can be written as NEWLINE\[NEWLINEu(t)= R(t) \Bigl(u_0- g\bigl(u(t_1), \dots,u(t_p) \bigr)+ \int^t_0R(t-s) f\biggl( s,u \bigl( \sigma(s) \bigr)\biggr) \Bigr)dsNEWLINE\]NEWLINE where \(R\) is the resolvent operator. NEWLINENEWLINENEWLINEThe authors define the resolvent operator \(R\), the notion of a mild solution to (1), (2) and the notion of classical solution to (1), (2). Then the authors prove the existence and uniqueness of mild and classical solutions to the nonlocal Cauchy problem (1), (2). The results are established by using the method of semigroups and the contraction mapping principle.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references