The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument (Q2716977)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument |
scientific article; zbMATH DE number 1599703
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument |
scientific article; zbMATH DE number 1599703 |
Statements
29 May 2002
0 references
nonlocal Cauchy problem
0 references
semilinear integrodifferential equations
0 references
deviating argument
0 references
semigroup
0 references
Banach space
0 references
resolvent operator
0 references
mild solution
0 references
classical solution
0 references
existence and uniqueness
0 references
method of semigroups
0 references
contraction mapping principle
0 references
0.9597018
0 references
0.94217813
0 references
0.9315991
0 references
The non-local Cauchy problem for semilinear integrodifferential equations with deviating argument (English)
0 references
Let \(A\) be the infinitesimal generator of a strongly continuous semigroup in a Banach space \(X\), \(Z(t)\) a bounded operator for \(t\in [0, T]\), \(T>0\), \(f:[0,T] \times X\to X\), \(g:X^p\to X\), \(p\in N\), be given functions. The authors consider the following integrodifferential equation with a deviating argument and nonlocal condition of the form NEWLINE\[NEWLINEu'(t)=A\bigl( u(t)+\int^t_0 Z(t-s) u(s)ds \bigr)+ f\biggl(t,u\bigl( \sigma(t)\bigr) \biggr), \quad 0\leq t\leq T,\tag{1}NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(0)+g \bigl(u(t_1), \dots,u(t_p) \bigr)=u_0 \tag{2}NEWLINE\]NEWLINE where \(0\leq t_0<t_1< \cdots< t_p\leq T\), \(u_0\in X\), \(\sigma\in C([0,T], [0,T])\), \(\sigma(t)\leq t\), \(t \in [0,T]\). The solution for (1) with \(u(t_0)=u_0\) can be written as NEWLINE\[NEWLINEu(t)= R(t) \Bigl(u_0- g\bigl(u(t_1), \dots,u(t_p) \bigr)+ \int^t_0R(t-s) f\biggl( s,u \bigl( \sigma(s) \bigr)\biggr) \Bigr)dsNEWLINE\]NEWLINE where \(R\) is the resolvent operator. NEWLINENEWLINENEWLINEThe authors define the resolvent operator \(R\), the notion of a mild solution to (1), (2) and the notion of classical solution to (1), (2). Then the authors prove the existence and uniqueness of mild and classical solutions to the nonlocal Cauchy problem (1), (2). The results are established by using the method of semigroups and the contraction mapping principle.
0 references