Estimates of character sums with exponential function (Q2717597)

From MaRDI portal





scientific article; zbMATH DE number 1605195
Language Label Description Also known as
English
Estimates of character sums with exponential function
scientific article; zbMATH DE number 1605195

    Statements

    Estimates of character sums with exponential function (English)
    0 references
    0 references
    17 June 2001
    0 references
    primitive Dirichlet character
    0 references
    Let \(n \geq 2\) and \(\lambda\) be integers satisfying \((n, \lambda)=1\) and \(\lambda\) belonging to the exponent \(d\) modulo \(n\). Given a primitive Dirichlet character \(\chi\) mod \(n\) the author proves the estimate NEWLINE\[NEWLINE \left|\sum_{x=1}^X \chi(a \lambda^x +b) \right|< \sqrt{n} \left( \frac{2}{\pi} \log n + \frac{7}{5} \right). NEWLINE\]NEWLINE Here \(a, b\) and \(X\) are integers satisfying \((ab,n)=1\) and \(1 \leq X \leq d\). In certain cases this inequality is essentially best possible. It is also shown that all results hold in general finite fields.
    0 references
    0 references

    Identifiers