Almost periodic ultradistributions of Beurling and of Roumieu type (Q2719006)

From MaRDI portal





scientific article; zbMATH DE number 1597897
Language Label Description Also known as
English
Almost periodic ultradistributions of Beurling and of Roumieu type
scientific article; zbMATH DE number 1597897

    Statements

    Almost periodic ultradistributions of Beurling and of Roumieu type (English)
    0 references
    14 May 2001
    0 references
    bounded ultradistributions
    0 references
    almost periodic ultradistributions
    0 references
    weight function
    0 references
    Young conjugate
    0 references
    bounded ultradistribution
    0 references
    sequence of trigonometric polynomials
    0 references
    Fourier coefficients
    0 references
    To extend results of \textit{I. Cioranescu} [Proc. Am. Math. Soc. 116, No. 1, 127-134 (1992; Zbl 0765.46021)] on almost periodic ultradistributions on the real line, the author introduces for a given weight function \(\omega\) the bounded ultradistributions of Beurling (resp. Roumieu) type as \({\mathcal D}_{L^1,(\omega)}'(\mathbb{R}^N)\) (resp. \({\mathcal D}_{L^1,\{\omega\}}'(\mathbb{R}^N)\)), where NEWLINE\[NEWLINE\begin{aligned} {\mathcal D}_{L^1,(\omega)}(\mathbb{R}^N) & =\{f\in{\mathcal D}(\mathbb{R}^N): \forall\lambda> 0:\|f\|_\lambda< \infty\},\\ {\mathcal D}_{L^1,\{\omega\}}(\mathbb{R}^N) &= \{f\in{\mathcal D}(\mathbb{R}^N): \exists\lambda> 0:\|f\|_\lambda< \infty\},\\ \|f\|_\lambda &:= \sup_{\alpha\in \mathbb{N}^N_0}\|f^{(\alpha)}\|_{L^1(\mathbb{R}^N)} \exp\Biggl(-\lambda\varphi^*\Biggl({|\alpha|\over \lambda}\Biggr)\Biggr),\end{aligned}NEWLINE\]NEWLINE and where \(\varphi^*\) is the Young conjugate of the convex function \(\varphi(t):= \omega(e^t)\).NEWLINENEWLINENEWLINEA bounded ultradistribution \(T\) is called almost periodic, if \(T\) is the \(\beta({\mathcal D}_{L^1,*}'(\mathbb{R}^N)\), \({\mathcal D}_{L^1,*}(\mathbb{R}^N))\)-limit of a sequence of trigonometric polynomials. Various characterizations of almost periodic ultradistributions are derived and it is investigated how an almost periodic ultradistribution in one variable can be obtained from its spectrum and its Fourier coefficients.
    0 references

    Identifiers