Almost periodic ultradistributions of Beurling and of Roumieu type (Q2719006)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Almost periodic ultradistributions of Beurling and of Roumieu type |
scientific article; zbMATH DE number 1597897
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Almost periodic ultradistributions of Beurling and of Roumieu type |
scientific article; zbMATH DE number 1597897 |
Statements
Almost periodic ultradistributions of Beurling and of Roumieu type (English)
0 references
14 May 2001
0 references
bounded ultradistributions
0 references
almost periodic ultradistributions
0 references
weight function
0 references
Young conjugate
0 references
bounded ultradistribution
0 references
sequence of trigonometric polynomials
0 references
Fourier coefficients
0 references
0 references
0.8183219
0 references
0.7124801
0 references
0.7112372
0 references
0 references
0.70583063
0 references
0.6924713
0 references
0.6904989
0 references
0.67095596
0 references
To extend results of \textit{I. Cioranescu} [Proc. Am. Math. Soc. 116, No. 1, 127-134 (1992; Zbl 0765.46021)] on almost periodic ultradistributions on the real line, the author introduces for a given weight function \(\omega\) the bounded ultradistributions of Beurling (resp. Roumieu) type as \({\mathcal D}_{L^1,(\omega)}'(\mathbb{R}^N)\) (resp. \({\mathcal D}_{L^1,\{\omega\}}'(\mathbb{R}^N)\)), where NEWLINE\[NEWLINE\begin{aligned} {\mathcal D}_{L^1,(\omega)}(\mathbb{R}^N) & =\{f\in{\mathcal D}(\mathbb{R}^N): \forall\lambda> 0:\|f\|_\lambda< \infty\},\\ {\mathcal D}_{L^1,\{\omega\}}(\mathbb{R}^N) &= \{f\in{\mathcal D}(\mathbb{R}^N): \exists\lambda> 0:\|f\|_\lambda< \infty\},\\ \|f\|_\lambda &:= \sup_{\alpha\in \mathbb{N}^N_0}\|f^{(\alpha)}\|_{L^1(\mathbb{R}^N)} \exp\Biggl(-\lambda\varphi^*\Biggl({|\alpha|\over \lambda}\Biggr)\Biggr),\end{aligned}NEWLINE\]NEWLINE and where \(\varphi^*\) is the Young conjugate of the convex function \(\varphi(t):= \omega(e^t)\).NEWLINENEWLINENEWLINEA bounded ultradistribution \(T\) is called almost periodic, if \(T\) is the \(\beta({\mathcal D}_{L^1,*}'(\mathbb{R}^N)\), \({\mathcal D}_{L^1,*}(\mathbb{R}^N))\)-limit of a sequence of trigonometric polynomials. Various characterizations of almost periodic ultradistributions are derived and it is investigated how an almost periodic ultradistribution in one variable can be obtained from its spectrum and its Fourier coefficients.
0 references