A proof of the homotopy push-out and pull-back lemma (Q2719023)

From MaRDI portal





scientific article; zbMATH DE number 1597914
Language Label Description Also known as
English
A proof of the homotopy push-out and pull-back lemma
scientific article; zbMATH DE number 1597914

    Statements

    A proof of the homotopy push-out and pull-back lemma (English)
    0 references
    0 references
    14 May 2001
    0 references
    homotopy pull-back
    0 references
    quasi-fibration
    0 references
    This paper provides an explicit, detailed proof of the homotopy pushout and pullback lemma. In particular, the author proves that for NDR-pairs \((X,A)\) and \((Y,B)\), with inclusions \(i:A\rightarrow X\) and \(j:B\rightarrow Y\), and maps \(f:Z\rightarrow X\) and \(g:Z\rightarrow Y\) from a space \(Z\), the homotopy pushout of \(\Omega _{f,i}\leftarrow \Omega _{(f,g),i\times j}\rightarrow \Omega _{g,j}\) is naturally of the same homotopy type as the homotopy pullback of \(Z\rightarrow X\times Y\leftarrow X\times B\cup A\times Y\). Here \(\Omega _{f,i}\), \(\Omega _{(f,g),i\times j}\), and \(\Omega _{g,j}\) are the homotopy pullbacks of \((Z\buildrel f\over \rightarrow X\buildrel i\over \leftarrow A)\), \((Z\buildrel (f,g)\circ \Delta\over \longrightarrow X\times Y\buildrel i\times j\over \longleftarrow A\times B)\), and \((Z\buildrel g\over\rightarrow Y\buildrel j\over\leftarrow B)\), respectively. \textit{N. Iwase} established this result for connected CW pairs \((X,A)\) and \((Y,B)\) [Bull. Lond. Math. Soc. 30, No. 6, 623-634 (1998; Zbl 0947.55006)]. Both theorems are generalizations of a result of \textit{T. Ganea} [Comment. Math. Helv. 39, 295-322 (1965; Zbl 0142.40702)]. The author concludes by stating a version of the theorem for the category of quasi-fibrations.
    0 references

    Identifiers