Second order Sturm-Liouville BVP's with impulses at variable moments (Q2720143)

From MaRDI portal





scientific article; zbMATH DE number 1610702
Language Label Description Also known as
English
Second order Sturm-Liouville BVP's with impulses at variable moments
scientific article; zbMATH DE number 1610702

    Statements

    0 references
    0 references
    4 November 2002
    0 references
    second-order Sturm-Liouville boundary value problems
    0 references
    impulsive differential equations
    0 references
    time-dependent impulses
    0 references
    Second order Sturm-Liouville BVP's with impulses at variable moments (English)
    0 references
    The authors consider a second-order system with impulses at variable times of the form NEWLINE\[NEWLINE\begin{alignedat}{2} x''(t)&=f\bigl(t,x(t), x'(t)\bigr),&\quad & \text{ a.e. }t\in [0,1],\\ NEWLINEx(t^+)&=I\bigl(x(t) \bigr),&\quad & \text{ if }t=\tau \bigl(x(t) \bigr), \\ NEWLINEx'(t^+)&= J\bigl(x(t)\bigr),& \quad &\text{ if }t=\tau \bigl(x(t) \bigr),NEWLINE\end{alignedat}\tag{1}NEWLINE\]NEWLINE with the Sturm-Liouville boundary condition NEWLINE\[NEWLINEx(0)-ax'(0) =\alpha,\;a\geq 0, \quad x(1)+bx'(1) =\beta,\;b\geq 0.\tag{2}NEWLINE\]NEWLINE The functions \(f:[0,1]\times \mathbb{R}^2\to\mathbb{R}\) and \(I,J:\mathbb{R} \to\mathbb{R}\) are continuous and \(\tau:\mathbb{R}\to(0,1)\) is of class \(C^2\). Sufficient conditions for the existence of a solution to (1), (2) are derived.
    0 references

    Identifiers