Second order Sturm-Liouville BVP's with impulses at variable moments (Q2720143)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Second order Sturm-Liouville BVP's with impulses at variable moments |
scientific article; zbMATH DE number 1610702
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Second order Sturm-Liouville BVP's with impulses at variable moments |
scientific article; zbMATH DE number 1610702 |
Statements
4 November 2002
0 references
second-order Sturm-Liouville boundary value problems
0 references
impulsive differential equations
0 references
time-dependent impulses
0 references
0.89931154
0 references
0.89485216
0 references
0.8928185
0 references
0.8894221
0 references
0.88896495
0 references
0.88627696
0 references
0.88345593
0 references
Second order Sturm-Liouville BVP's with impulses at variable moments (English)
0 references
The authors consider a second-order system with impulses at variable times of the form NEWLINE\[NEWLINE\begin{alignedat}{2} x''(t)&=f\bigl(t,x(t), x'(t)\bigr),&\quad & \text{ a.e. }t\in [0,1],\\ NEWLINEx(t^+)&=I\bigl(x(t) \bigr),&\quad & \text{ if }t=\tau \bigl(x(t) \bigr), \\ NEWLINEx'(t^+)&= J\bigl(x(t)\bigr),& \quad &\text{ if }t=\tau \bigl(x(t) \bigr),NEWLINE\end{alignedat}\tag{1}NEWLINE\]NEWLINE with the Sturm-Liouville boundary condition NEWLINE\[NEWLINEx(0)-ax'(0) =\alpha,\;a\geq 0, \quad x(1)+bx'(1) =\beta,\;b\geq 0.\tag{2}NEWLINE\]NEWLINE The functions \(f:[0,1]\times \mathbb{R}^2\to\mathbb{R}\) and \(I,J:\mathbb{R} \to\mathbb{R}\) are continuous and \(\tau:\mathbb{R}\to(0,1)\) is of class \(C^2\). Sufficient conditions for the existence of a solution to (1), (2) are derived.
0 references