Moment generating function and generalized Feller operators (Q2721804)

From MaRDI portal





scientific article; zbMATH DE number 1616540
Language Label Description Also known as
English
Moment generating function and generalized Feller operators
scientific article; zbMATH DE number 1616540

    Statements

    0 references
    0 references
    21 February 2002
    0 references
    generalized Feller
    0 references
    moment generating
    0 references
    unbounded function
    0 references
    approximation degree
    0 references
    Moment generating function and generalized Feller operators (English)
    0 references
    Let \(\{X_i\}\) be the sequence of random variables with independent identical distribution (denoted by i.i.d.r.v sequence), \(EX_i=x\), \(x\in(-\infty, +\infty)\), we denote by \(S_n=X_1+ X_2+\cdots +X_n\), the distribution function of \(S_n\) be \(F_{n,x}(t)\), for \(j\in C_B(-\infty, +\infty)\) Feller operators are defined by NEWLINE\[NEWLINEF_n(f_ix): =Ef\left({S_n\over n}\right)= \int^\infty_{-\infty} f\left({t\over n} \right)dF_{n,x}(t),NEWLINE\]NEWLINE where \(E\) denotes mathematical expectation. If mathematical expectation \(EX_i\varphi(x)\), the authors generalize the Feller operators: let \(\{X_i\}\) be i.i.d.r.v sequence, \(EX_i= \varphi(x)\), \(\varphi(x\) be strictly increasing function on \([0,R)\) \((R\) is a finite positive number or \(+\infty)\), its inverse function \(\psi(x)\), \(\text{Var} X_i= \sigma^2(x)< +\infty\), generalized Feller operators are defined by NEWLINE\[NEWLINEL_n(f;x): =Ef\left[\psi \left({S_n\over n}\right) \right]= \int_0^{+ \infty} f\left[\psi \left({S_n\over n}\right)\right]d F_{n,x}(t),\;x\in [0,R),NEWLINE\]NEWLINE the special case of \(L_n(f;x)\) is the Meyer-König and Zeller operator. Applying the calculative property of moment generating functions and probabilistic methods, in the paper the convergence and estimation of approximation degree to unbounded functions for generalized Feller operators are obtained.
    0 references

    Identifiers