Existence and uniqueness of positive eigenvalues for certain eigenvalue systems (Q2721870)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence and uniqueness of positive eigenvalues for certain eigenvalue systems |
scientific article; zbMATH DE number 1616915
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence and uniqueness of positive eigenvalues for certain eigenvalue systems |
scientific article; zbMATH DE number 1616915 |
Statements
11 July 2001
0 references
\(p\)-Laplacien
0 references
positive eigenfunctions
0 references
Existence and uniqueness of positive eigenvalues for certain eigenvalue systems (English)
0 references
This paper is devoted to the eigenvalue problem of the form NEWLINE\[NEWLINE\begin{cases} -\Delta_p u+a\psi_p(u)= \lambda^{p-1} \sum^k_{i=1} a_i(x) u^{ \alpha_i} v^{p-1-\alpha_i} \quad & \text{in }\Omega\\ -\Delta_q v+b \psi_q (v) =\lambda^{q-1} \sum^N_{j=1} b_j(x)u^{q-1- \beta_j} v^{\beta_j} \quad & \text{in }\Omega\\ u=v=0\quad & \text{on }\partial \Omega \end{cases}.\tag{1}NEWLINE\]NEWLINE Under some natural assumptions the authors prove that (1) has a unique eigenvalue with positive eigenfunctions, and that the eigenfunction is unique up to a scalar multiple.
0 references