Stability of a special class of \(q_{ij}\)-CCR and extensions of irrational rotation algebras (Q2722114)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stability of a special class of \(q_{ij}\)-CCR and extensions of irrational rotation algebras |
scientific article; zbMATH DE number 1617362
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stability of a special class of \(q_{ij}\)-CCR and extensions of irrational rotation algebras |
scientific article; zbMATH DE number 1617362 |
Statements
11 July 2001
0 references
quantum deformation
0 references
non-commutative torus
0 references
Fock representation
0 references
nuclear
0 references
0.9258335
0 references
0.8803966
0 references
0.8744193
0 references
0.8692258
0 references
0.8677649
0 references
0 references
Stability of a special class of \(q_{ij}\)-CCR and extensions of irrational rotation algebras (English)
0 references
The author studies the \(C^*\)-algebra \(A_{\{q_i\},\{\lambda_{ij}\}}\) corresponding to the relations \(a_i^*a_i=1+q_ia_ia_i^*\) (\(-1<q_i<1\)), \(a_i^*a_j=\lambda_{ij}a_ja_i^*\) (\(|\lambda_{ij}|=1,\lambda_{ij}=\overline{\lambda_{ji}}\)), \(a_ja_i=\lambda_{ij}a_ia_j\), \(i,j=1,\ldots ,d\). It is shown that \(A_{\{q_i\},\{\lambda_{ij}\}}\) is isomorphic to the \(C^*\)-algebra \(A_{\{0\},\{\lambda_{ij}\}}\) generated by isometries. The latter is nuclear. Its irreducible representations are described. The case \(d=2\) is considered in details.
0 references