Random variables without first moment overtake their partial sums (Q2722490)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Random variables without first moment overtake their partial sums |
scientific article; zbMATH DE number 1617791
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Random variables without first moment overtake their partial sums |
scientific article; zbMATH DE number 1617791 |
Statements
13 December 2001
0 references
independent identically distributed random variables
0 references
overtaking of partial sums
0 references
0.8658525
0 references
0.86554986
0 references
0.8646264
0 references
0.8552317
0 references
Random variables without first moment overtake their partial sums (English)
0 references
The authors prove the following result: Let \((X_1,X_2,\dots)\) be an i.i.d. sequence of strictly positive random variables on some probability space \((\Omega,{\mathcal F},\mathbb{P})\) which fulfill the condition: There exist \(C_1> 0\) and \(C_2> 0\) such that NEWLINE\[NEWLINE{C_1\over 1+t}\leq \mathbb{P}(X_1> t)\leq {C_2\over 1+t},\quad\text{for every }t> 0.NEWLINE\]NEWLINE Then NEWLINE\[NEWLINE\sum^\infty_{n=1} {1\over X_1+\cdots+ X_n}= \infty\text{ a.s.}\quad\text{and}\quad \sum^\infty_{n=1} 1_{\{X_{n+1}> X_1+\cdots+ X_n\}}= \infty \text{ a.s}.NEWLINE\]NEWLINENEWLINENEWLINEFor the entire collection see [Zbl 0958.00034].
0 references