Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem (Q2723224)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pointwise a Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem |
scientific article; zbMATH DE number 1614303
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem |
scientific article; zbMATH DE number 1614303 |
Statements
1 August 2001
0 references
finite element method
0 references
elliptic obstacle problem
0 references
a posteriori error estimate
0 references
maximum norm
0 references
penalty method
0 references
algorithm
0 references
0.9312719
0 references
0.9188724
0 references
0.90659064
0 references
0.90445894
0 references
0.9038838
0 references
0.9028809
0 references
0.90114516
0 references
Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem (English)
0 references
Finite element approximations based on a penalty formulation of the elliptic obstacle problem are analyzed in the maximum norm. A posteriori error estimates, which involve a residual of the approximation and a spatially variable penalty parameter, are derived in the cases of both smooth and rough obstacles. An adaptive algorithm is suggested and implemented in one dimension.NEWLINENEWLINENEWLINEMain result: The error bound in the maximum norm of the form NEWLINE\[NEWLINE\|U_\varepsilon- u_\varepsilon\|_{L_\infty(\Omega)}\leq C|\log h_{\max}|\|h^2 R_\infty\|_{L_\infty(\Omega)}NEWLINE\]NEWLINE and the penalty error in the case of a smooth obstacle function NEWLINE\[NEWLINE\Psi\in W^2_\infty(\Omega):\|u- u_\varepsilon\|_{L_\infty(\Omega)}\leq \|\varepsilon(f+ \Delta\Psi)\|_{L_\infty(\Omega)},NEWLINE\]NEWLINE are proposed.
0 references