Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem (Q2723224)

From MaRDI portal





scientific article; zbMATH DE number 1614303
Language Label Description Also known as
English
Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem
scientific article; zbMATH DE number 1614303

    Statements

    0 references
    0 references
    0 references
    1 August 2001
    0 references
    finite element method
    0 references
    elliptic obstacle problem
    0 references
    a posteriori error estimate
    0 references
    maximum norm
    0 references
    penalty method
    0 references
    algorithm
    0 references
    Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem (English)
    0 references
    Finite element approximations based on a penalty formulation of the elliptic obstacle problem are analyzed in the maximum norm. A posteriori error estimates, which involve a residual of the approximation and a spatially variable penalty parameter, are derived in the cases of both smooth and rough obstacles. An adaptive algorithm is suggested and implemented in one dimension.NEWLINENEWLINENEWLINEMain result: The error bound in the maximum norm of the form NEWLINE\[NEWLINE\|U_\varepsilon- u_\varepsilon\|_{L_\infty(\Omega)}\leq C|\log h_{\max}|\|h^2 R_\infty\|_{L_\infty(\Omega)}NEWLINE\]NEWLINE and the penalty error in the case of a smooth obstacle function NEWLINE\[NEWLINE\Psi\in W^2_\infty(\Omega):\|u- u_\varepsilon\|_{L_\infty(\Omega)}\leq \|\varepsilon(f+ \Delta\Psi)\|_{L_\infty(\Omega)},NEWLINE\]NEWLINE are proposed.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references