On the inverse spectral theory of Schrödinger and Dirac operators (Q2723469)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the inverse spectral theory of Schrödinger and Dirac operators |
scientific article; zbMATH DE number 1614739
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the inverse spectral theory of Schrödinger and Dirac operators |
scientific article; zbMATH DE number 1614739 |
Statements
On the inverse spectral theory of Schrödinger and Dirac operators (English)
0 references
5 July 2001
0 references
inverse spectral problems
0 references
spectral function
0 references
Weyl function
0 references
Schrödinger operator
0 references
Dirac operator
0 references
0 references
0 references
0.94400597
0 references
0.9365868
0 references
0.9319048
0 references
0.9313511
0 references
0 references
0.9300016
0 references
0.92972124
0 references
Let \(\sigma_j\), \(j=1,\dots,N\), be the spectra of the boundary value problem NEWLINE\[NEWLINE -y''+q(x)y=\lambda y,\quad 0<x<\pi, NEWLINE\]NEWLINE NEWLINE\[NEWLINE y(0)\cos\alpha_j + y'(0)\sin\alpha_j =0, \qquad y(\pi)\cos\beta + y'(\pi)\sin\beta =0, NEWLINE\]NEWLINE where \(q(x)\in L_1(0,\pi)\) is real, \(0\leq\alpha_j<\pi\), \(0\leq\beta<\pi\). Let \(a\in [0,\pi)\), and \(S_j\subset\sigma_j\). Under some conditions it is proved that the specification of \(S_j\), \(j=1,\dots,N\), and \(q\) on \((0,a)\) uniquely determines \(q\) on \((a,\pi)\).
0 references