On the inverse spectral theory of Schrödinger and Dirac operators (Q2723469)

From MaRDI portal





scientific article; zbMATH DE number 1614739
Language Label Description Also known as
English
On the inverse spectral theory of Schrödinger and Dirac operators
scientific article; zbMATH DE number 1614739

    Statements

    On the inverse spectral theory of Schrödinger and Dirac operators (English)
    0 references
    0 references
    5 July 2001
    0 references
    inverse spectral problems
    0 references
    spectral function
    0 references
    Weyl function
    0 references
    Schrödinger operator
    0 references
    Dirac operator
    0 references
    Let \(\sigma_j\), \(j=1,\dots,N\), be the spectra of the boundary value problem NEWLINE\[NEWLINE -y''+q(x)y=\lambda y,\quad 0<x<\pi, NEWLINE\]NEWLINE NEWLINE\[NEWLINE y(0)\cos\alpha_j + y'(0)\sin\alpha_j =0, \qquad y(\pi)\cos\beta + y'(\pi)\sin\beta =0, NEWLINE\]NEWLINE where \(q(x)\in L_1(0,\pi)\) is real, \(0\leq\alpha_j<\pi\), \(0\leq\beta<\pi\). Let \(a\in [0,\pi)\), and \(S_j\subset\sigma_j\). Under some conditions it is proved that the specification of \(S_j\), \(j=1,\dots,N\), and \(q\) on \((0,a)\) uniquely determines \(q\) on \((a,\pi)\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references