A note on the Hurwitz zeta function (Q2724052)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on the Hurwitz zeta function |
scientific article; zbMATH DE number 1615369
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on the Hurwitz zeta function |
scientific article; zbMATH DE number 1615369 |
Statements
8 July 2001
0 references
Hurwitz zeta-function
0 references
polylogarithms
0 references
discrete Fourier transform
0 references
A note on the Hurwitz zeta function (English)
0 references
Let, as usual, NEWLINE\[NEWLINE \zeta(\nu,a) = \sum_{n=0}^\infty (n+a)^{-\nu} \quad (0 < a \leq 1, \Re\nu > 1), \quad \text{Li}_\nu(z) = \sum_{k=1}^\infty z^k k^{-\nu} (\Re \nu > 1) NEWLINE\]NEWLINE denote the Hurwitz zeta-function and the polylogarithm function, respectively. For \(t \in \mathbb N\) and \(\omega = \exp(2\pi i/t)\) the authors derive the elementary identities NEWLINE\[NEWLINE \zeta\left(\nu,{s\over t}\right) = {1\over t}\sum_{r=1}^t t^\nu\text{Li}_\nu(\omega^r) \omega^{-rs}\qquad(s = 1,2,\ldots,t)\tag{1} NEWLINE\]NEWLINE and NEWLINE\[NEWLINE \text{Li}_\nu(\omega^r) = {1\over t^\nu} \sum_{s=1}^t \zeta\left(\nu,{s\over t}\right) \omega^{rs}\qquad(r = 1,2,\ldots,t).\tag{2} NEWLINE\]NEWLINE From (1) and (2) several corollaries are deduced, which involve various sums and the Bernoulli numbers. To prove (1) and (2) it suffices, by analytic continuation, to consider only \(\Re \nu > 1\). The proof of (2) is immediate from NEWLINE\[NEWLINE \text{Li}_\nu(\omega^r) = \sum_{m=0}^\infty \sum_{s=1}^t {\exp(2\pi \text{ir}(tm+s)/t)\over(tm+s)^\nu} = {1\over t^\nu}\sum_{s=1}^t\exp\left({2\pi \text{ir}s\over t}\right) \sum_{m=0}^\infty{1\over\left(m + {s\over t}\right)^\nu}. NEWLINE\]NEWLINE Substituting the expression (2) in the right-hand side of (1) we obtain (1), with the remark that this is not correctly given on p. 50, since the ``orthogonality relationship'' NEWLINE\[NEWLINE \sum_{r=1}^t\omega^{rs}\omega^{-rs} = \begin{cases} t &\text{if }r=s,\\ 0&\text{otherwise},\end{cases} NEWLINE\]NEWLINE is obviously not true (the dummy variable \(s\) in (2) is not to be confused with \(s\) in (1)).
0 references