A note on the Hurwitz zeta function (Q2724052)

From MaRDI portal





scientific article; zbMATH DE number 1615369
Language Label Description Also known as
English
A note on the Hurwitz zeta function
scientific article; zbMATH DE number 1615369

    Statements

    0 references
    0 references
    8 July 2001
    0 references
    Hurwitz zeta-function
    0 references
    polylogarithms
    0 references
    discrete Fourier transform
    0 references
    A note on the Hurwitz zeta function (English)
    0 references
    Let, as usual, NEWLINE\[NEWLINE \zeta(\nu,a) = \sum_{n=0}^\infty (n+a)^{-\nu} \quad (0 < a \leq 1, \Re\nu > 1), \quad \text{Li}_\nu(z) = \sum_{k=1}^\infty z^k k^{-\nu} (\Re \nu > 1) NEWLINE\]NEWLINE denote the Hurwitz zeta-function and the polylogarithm function, respectively. For \(t \in \mathbb N\) and \(\omega = \exp(2\pi i/t)\) the authors derive the elementary identities NEWLINE\[NEWLINE \zeta\left(\nu,{s\over t}\right) = {1\over t}\sum_{r=1}^t t^\nu\text{Li}_\nu(\omega^r) \omega^{-rs}\qquad(s = 1,2,\ldots,t)\tag{1} NEWLINE\]NEWLINE and NEWLINE\[NEWLINE \text{Li}_\nu(\omega^r) = {1\over t^\nu} \sum_{s=1}^t \zeta\left(\nu,{s\over t}\right) \omega^{rs}\qquad(r = 1,2,\ldots,t).\tag{2} NEWLINE\]NEWLINE From (1) and (2) several corollaries are deduced, which involve various sums and the Bernoulli numbers. To prove (1) and (2) it suffices, by analytic continuation, to consider only \(\Re \nu > 1\). The proof of (2) is immediate from NEWLINE\[NEWLINE \text{Li}_\nu(\omega^r) = \sum_{m=0}^\infty \sum_{s=1}^t {\exp(2\pi \text{ir}(tm+s)/t)\over(tm+s)^\nu} = {1\over t^\nu}\sum_{s=1}^t\exp\left({2\pi \text{ir}s\over t}\right) \sum_{m=0}^\infty{1\over\left(m + {s\over t}\right)^\nu}. NEWLINE\]NEWLINE Substituting the expression (2) in the right-hand side of (1) we obtain (1), with the remark that this is not correctly given on p. 50, since the ``orthogonality relationship'' NEWLINE\[NEWLINE \sum_{r=1}^t\omega^{rs}\omega^{-rs} = \begin{cases} t &\text{if }r=s,\\ 0&\text{otherwise},\end{cases} NEWLINE\]NEWLINE is obviously not true (the dummy variable \(s\) in (2) is not to be confused with \(s\) in (1)).
    0 references

    Identifiers