Jordanian presentation of the Weyl algebra \(A_2\) (Q2724114)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Jordanian presentation of the Weyl algebra \(A_2\) |
scientific article; zbMATH DE number 1615671
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Jordanian presentation of the Weyl algebra \(A_2\) |
scientific article; zbMATH DE number 1615671 |
Statements
9 July 2001
0 references
Weyl algebras
0 references
generators
0 references
relations
0 references
normal elements
0 references
embeddings
0 references
0.8697766
0 references
0.86589587
0 references
0 references
0 references
0.85212755
0 references
Jordanian presentation of the Weyl algebra \(A_2\) (English)
0 references
Let \(k\) be a field and \(a,b\in k\). Suppose that \(J_{a,b}\) is the Weyl algebra on a Jordan plane, that is an associative algebra with generators \(x_1,x_2,\partial_1,\partial_2\) subject to defining relations NEWLINE\[NEWLINE\begin{alignedat}{2} 3[x_1,x_2]&=ax_1^2,&\qquad[\partial_1,x_1]&=1+ax_1\partial_2,&\qquad[\partial_1,\partial_2]&=-b\partial_2^2,\\ [\partial_2,x_2]&=1-bx_1\partial_2,&\qquad[\partial_2,x_1]&=0,&\qquad[\partial_1,x_2]&=-ax_1\partial_1-abx_1\partial_2+bx_2\partial_2.\end{alignedat}NEWLINE\]NEWLINE It is observed that the element \(z=1+(a-b)x_1\partial_2\) is normal. Denote by \(H_{a,b}\) the localization of \(J_{a,b}\) by the multiplicative semigroup generated by \(z\). The main result of the paper shows that there exist embeddings \(J_{a,b}\subset A_2(k)\subset H_{a,b}\), where \(A_2(k)\) is a Weyl algebra.
0 references