Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques. (A new version of Hartogs' extension theorem for the separately holomorphic mappings between analytic spaces) (Q2724133)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques. (A new version of Hartogs' extension theorem for the separately holomorphic mappings between analytic spaces) |
scientific article; zbMATH DE number 1615691
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques. (A new version of Hartogs' extension theorem for the separately holomorphic mappings between analytic spaces) |
scientific article; zbMATH DE number 1615691 |
Statements
9 July 2001
0 references
separately holomorphic mapping
0 references
pluripolar set
0 references
Hartogs theorem
0 references
0 references
0.8979571
0 references
0.8877132
0 references
0.8709713
0 references
0.86996615
0 references
Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques. (A new version of Hartogs' extension theorem for the separately holomorphic mappings between analytic spaces) (English)
0 references
Let \(X, Y, Z\) be complex analytic spaces, \(E\subset K\subset X\) and \(F\subset L\subset Y\) be non-pluripolar sets, \(W:=(K\times F)\cup (E\times L)\). A mapping \(f:W\to Z\) is said to be separately holomorphic if for any \(x\in E\), the mapping \(f(x,\cdot):L\to Z\) extends to a holomorphic mapping of a neighbourhood of \(L\), and similarly with respect to the second variable.NEWLINENEWLINENEWLINEThe main result of the paper is as follows. For any separately holomorphic mapping of a ``cross'' \(W\) with Borel \(K\) and \(L\) of type \({\mathcal F}_\sigma\), there exist Borel sets \(E'\subset E\) and \(F'\subset F\) such that \(E\setminus E'\) and \(F\setminus F'\) are pluripolar and the mapping \(f\) extends to a holomorphic mapping of a neighbourhood of \((K\times F')\cup (E'\times L)\). In particular, the set of regular points of \(W\) where \(f\) has no holomorphic extension is double pluripolar (i.e., its projections to \(X\) and \(Y\) are pluripolar).NEWLINENEWLINENEWLINEUnder certain additional assumptions on the ``crosses'', more precise results are deduced. This gives generalizations for a number of known results on the subject as well.
0 references