Global bifurcation result for the \(p\)-biharmonic operator (Q2724154)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global bifurcation result for the \(p\)-biharmonic operator |
scientific article; zbMATH DE number 1615752
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global bifurcation result for the \(p\)-biharmonic operator |
scientific article; zbMATH DE number 1615752 |
Statements
9 July 2001
0 references
principal eigenvalue
0 references
nonlinear eigenvalue problem
0 references
Global bifurcation result for the \(p\)-biharmonic operator (English)
0 references
The authors prove that the nonlinear eigenvalue problem NEWLINE\[NEWLINE\Delta(|\Delta u|^{p-2}\Delta u)= \lambda|u|^{p- 2}u\quad\text{in }\Omega\subset \mathbb{R}^n,\quad p\in (1,+\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINEu= \Delta u= 0\quad\text{on }\partial\Omega,NEWLINE\]NEWLINE has a principal positive eigenvalue \(\lambda_1(p)\), which is simple and isolated. Exists a strictly positive eigenfunction \(u_1(p)\) in \(\Omega\) associated with \(\lambda_1(p)\) and satisfying \((\partial u_1/\partial n)< 0\) on \(\partial\Omega\). \(\lambda_1(p)\) is a bifurcation point of NEWLINE\[NEWLINE\Delta(|\Delta|^{p- 2}\Delta u)= \lambda|u|^{p-2} u+g(x,\lambda,u)\quad \text{in }\Omega,NEWLINE\]NEWLINE NEWLINE\[NEWLINEu= \Delta u= 0\quad\text{on }\partial\Omega,NEWLINE\]NEWLINE from which a global continuum of nontrivial solutions emanates. The one-dimensional case (\(n=1\), \(\Omega= (0,1)\)) is investgated in detail.
0 references