On trapezoid inequality via a Grüss type result and applications (Q2724875)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On trapezoid inequality via a Grüss type result and applications |
scientific article; zbMATH DE number 1618335
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On trapezoid inequality via a Grüss type result and applications |
scientific article; zbMATH DE number 1618335 |
Statements
9 April 2002
0 references
Grüss inequality
0 references
trapezoid inequality
0 references
On trapezoid inequality via a Grüss type result and applications (English)
0 references
The following result of Grüss type is proved:NEWLINENEWLINENEWLINELet \(f,g:[a,b]\to \mathbb{R}\) be two integrable mappings. Then NEWLINE\[NEWLINE\begin{multlined}\Biggl|{1\over b-a} \int^b_a f(x)g(x) dx- {1\over b-a} \int^b_a f(x) dx\cdot{1\over b-a} \int^b_a g(x) dx\Biggr|\leq\\ {1\over b-a} \int^b_a\Biggl|\Biggl(f(x)- {1\over b-a} \int^b_a f(y) dy\Biggr) \Biggl(g(x)- {1\over b-a} \int^b_a g(y) dy\Biggr)\Biggr|dx.\end{multlined}NEWLINE\]NEWLINE The inequality is sharp.NEWLINENEWLINENEWLINESome applications are also given.
0 references