Some Möbius-type functions and inversions constructed via difference operators (Q2724883)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some Möbius-type functions and inversions constructed via difference operators |
scientific article; zbMATH DE number 1618343
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some Möbius-type functions and inversions constructed via difference operators |
scientific article; zbMATH DE number 1618343 |
Statements
16 January 2003
0 references
arithmetic functions
0 references
Möbius inversion formulas
0 references
Dirichlet convolution
0 references
reciprocal pairs of difference equations
0 references
Newton-Leibniz fundamental formulas
0 references
nonstandard analysis
0 references
Möbius-type functions
0 references
Möbius-type inversions
0 references
Some Möbius-type functions and inversions constructed via difference operators (English)
0 references
Let a Möbius inversion pair \((f,g)\) of arithmetic functions \(f\) and \(g\) be defined by the Möbius inversion formulas NEWLINE\[NEWLINEf(n)= \sum_{d|n} g(d) \iff g(n)= \sum_{d|n} f(d) \mu \biggl(\frac{n}{d} \biggr)NEWLINE\]NEWLINE respectively (using the notation of Dirichlet convolution) \(f=g*1 \Leftrightarrow g=f*\mu\).NEWLINENEWLINENEWLINEThe authors show that such pairs can be expressed as simple reciprocal pairs of difference equations. Using this fact, they prove that the Möbius inversion formulas represent a discrete analogue of the Newton-Leibniz fundamental formulas. Applying some concepts of nonstandard analysis, the authors present some extensions of Möbius-type functions and they obtain more general Möbius-type inversions.
0 references