On two new multidimensional integral inequalities of the Hilbert type (Q2724916)

From MaRDI portal





scientific article; zbMATH DE number 1618374
Language Label Description Also known as
English
On two new multidimensional integral inequalities of the Hilbert type
scientific article; zbMATH DE number 1618374

    Statements

    0 references
    24 August 2002
    0 references
    multidimensional integral inequalities
    0 references
    Hilbert inequality
    0 references
    integral analogue of the Hilbert inequality
    0 references
    functions of two and several independent variables
    0 references
    Schwartz inequality
    0 references
    On two new multidimensional integral inequalities of the Hilbert type (English)
    0 references
    In this paper, the author establishes two new integral inequalities similar to the integral analogue of the Hilbert's inequality involving functions of two and several independent variables. Indeed, under the assumptions that \(I_x = [0,x)\), \(I_y = [0,y)\), \(I_z = [0,z)\), \(I_w = [0,w)\), \(I_0 = (0,\infty)\), \(I = [0,\infty)\) are subintervals in \(\Re\), \(\bigtriangleup_1 =I_x \times I_y\), \(\bigtriangleup_2 =I_z \times I_w\), \(D_1 u(s,t)\) and \(D_2 u(s,t)\) denote the partial derivatives \(\frac{\partial}{ds}u(s,t)\) and \(\frac{\partial}{dt}u(s,t)\), respectively. Furthermore, if \(H(\bigtriangleup)\), where \(\bigtriangleup = I \times I\), denotes the class of functions \(u(s,t) \in C^{(n-1,m-1)}(\bigtriangleup)\) such that \(D^i _1 u(0,t) = 0\), \(0 \leq i \leq n-1\), \(t\in I,\) \(D^j _2 u(s,0) = 0\), \(0 \leq j \leq m-1\), \(s\in I,\) and \(D^n _1 D^{m-1}_2 u(s,t)\) and \(D^{n-1} _1 D^m_2 u(s,t)\) are absolutely continuous on \(I \times I\), the author proves the following for functions of two independent variables: if \(u(s,t) \in H(\bigtriangleup_1)\) and \(u(s,t) \in H(\bigtriangleup_2)\) then the following inequality holds NEWLINE\[NEWLINE\int^x _0\int^y _0\Biggl(\int^z _0 \int^w _0 \frac{|D^i_1 D^j_2 u(s,t)||D^i_1 D^j_2 v(k,r)|} {s^{2n-2i-1}t^{2m-2j-1} + k^{2n-2i-1}r^{2m-2j-1}} dk dr\Biggr) ds dt NEWLINE\]NEWLINE NEWLINE\[NEWLINE \leq \frac 1{2}[A_{i,j}B_{i,j}]^2\sqrt{xyzw} \times \Biggl(\int^x_0 \int^y_0(x-s)(y-t)|D^n _1 D^m_2 u(s,t)|^2 ds dt\Biggr)^{1/2}\timesNEWLINE\]NEWLINE NEWLINE\[NEWLINE\times \Biggl(\int^z_0 \int^w_0(z-k)(w-r)|D^n _1 D^m_2 v(k,r)|^2 dk dr\Biggr)^{1/2},NEWLINE\]NEWLINE for \(x,y,z,w \in I_{0}\) where NEWLINE\[NEWLINEA_{i,j} = \frac 1{(n-i-1)!(m-j-1)!}, \quad B_{i,j} = \frac 1{(2n-2i-1)!(2m-2j-1)!}.NEWLINE\]NEWLINE Furthermore, the author extends the above result to functions of several variables and their partial derivatives by proving that if \(u(x) \in G(E)\) and \(V(y) \in G(F)\), then NEWLINE\[NEWLINE\int_E \Biggl(\int_F \frac{|u(x)||v(y)|}{\prod^n_{i=1} x_i + \prod^n _{i=1} y_i} dy\Biggr) dx \leq \frac 1{2}\Biggl(\prod^n_{i=1}a_i \Biggr)^{1/2}\Biggl(\prod^n_{i=1}b_i \Biggr)^{1/2}\timesNEWLINE\]NEWLINE NEWLINE\[NEWLINE\times \Biggl(\int_E \prod^n _{i=1} (a_i -x_i)|D_1 \cdots D_n u(x)|^2 dx\Biggr)^{1/2} \Biggl(\int_F \prod^n _{i=1} (b_i -y_i)|D_1 \cdots D_n v(y)|^2 dx\Biggr)^{1/2},NEWLINE\]NEWLINE where \(E = \prod^n_{i=1}[0,a_i]\), \(F = \prod^n_{i=1}[0,b_i]\), \(a_i, b_i \in (0, \infty)\), \(u: E \to \Re\), \(v: F \to \Re\) for which the partial derivatives \(D_1 \cdots D_n u(x)\) and \(D_1 \cdots D_n v(y)\) exist and NEWLINE\[NEWLINEu(0,x_2, \dots,x_n) = u(x_1,0,x_3,\dots, x_n) = \cdots = u(x_1,\dots, x_{n-1},0) = 0NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(0,y_2, \dots, y_n) = u(y_1,0,y_3,\dots, y_n) = \cdots = u(y_1,\dots, y_{n-1},0) = 0.NEWLINE\]
    0 references

    Identifiers