On two new multidimensional integral inequalities of the Hilbert type (Q2724916)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On two new multidimensional integral inequalities of the Hilbert type |
scientific article; zbMATH DE number 1618374
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On two new multidimensional integral inequalities of the Hilbert type |
scientific article; zbMATH DE number 1618374 |
Statements
24 August 2002
0 references
multidimensional integral inequalities
0 references
Hilbert inequality
0 references
integral analogue of the Hilbert inequality
0 references
functions of two and several independent variables
0 references
Schwartz inequality
0 references
0.94464815
0 references
0.9425233
0 references
0.9404562
0 references
0.93714136
0 references
0 references
On two new multidimensional integral inequalities of the Hilbert type (English)
0 references
In this paper, the author establishes two new integral inequalities similar to the integral analogue of the Hilbert's inequality involving functions of two and several independent variables. Indeed, under the assumptions that \(I_x = [0,x)\), \(I_y = [0,y)\), \(I_z = [0,z)\), \(I_w = [0,w)\), \(I_0 = (0,\infty)\), \(I = [0,\infty)\) are subintervals in \(\Re\), \(\bigtriangleup_1 =I_x \times I_y\), \(\bigtriangleup_2 =I_z \times I_w\), \(D_1 u(s,t)\) and \(D_2 u(s,t)\) denote the partial derivatives \(\frac{\partial}{ds}u(s,t)\) and \(\frac{\partial}{dt}u(s,t)\), respectively. Furthermore, if \(H(\bigtriangleup)\), where \(\bigtriangleup = I \times I\), denotes the class of functions \(u(s,t) \in C^{(n-1,m-1)}(\bigtriangleup)\) such that \(D^i _1 u(0,t) = 0\), \(0 \leq i \leq n-1\), \(t\in I,\) \(D^j _2 u(s,0) = 0\), \(0 \leq j \leq m-1\), \(s\in I,\) and \(D^n _1 D^{m-1}_2 u(s,t)\) and \(D^{n-1} _1 D^m_2 u(s,t)\) are absolutely continuous on \(I \times I\), the author proves the following for functions of two independent variables: if \(u(s,t) \in H(\bigtriangleup_1)\) and \(u(s,t) \in H(\bigtriangleup_2)\) then the following inequality holds NEWLINE\[NEWLINE\int^x _0\int^y _0\Biggl(\int^z _0 \int^w _0 \frac{|D^i_1 D^j_2 u(s,t)||D^i_1 D^j_2 v(k,r)|} {s^{2n-2i-1}t^{2m-2j-1} + k^{2n-2i-1}r^{2m-2j-1}} dk dr\Biggr) ds dt NEWLINE\]NEWLINE NEWLINE\[NEWLINE \leq \frac 1{2}[A_{i,j}B_{i,j}]^2\sqrt{xyzw} \times \Biggl(\int^x_0 \int^y_0(x-s)(y-t)|D^n _1 D^m_2 u(s,t)|^2 ds dt\Biggr)^{1/2}\timesNEWLINE\]NEWLINE NEWLINE\[NEWLINE\times \Biggl(\int^z_0 \int^w_0(z-k)(w-r)|D^n _1 D^m_2 v(k,r)|^2 dk dr\Biggr)^{1/2},NEWLINE\]NEWLINE for \(x,y,z,w \in I_{0}\) where NEWLINE\[NEWLINEA_{i,j} = \frac 1{(n-i-1)!(m-j-1)!}, \quad B_{i,j} = \frac 1{(2n-2i-1)!(2m-2j-1)!}.NEWLINE\]NEWLINE Furthermore, the author extends the above result to functions of several variables and their partial derivatives by proving that if \(u(x) \in G(E)\) and \(V(y) \in G(F)\), then NEWLINE\[NEWLINE\int_E \Biggl(\int_F \frac{|u(x)||v(y)|}{\prod^n_{i=1} x_i + \prod^n _{i=1} y_i} dy\Biggr) dx \leq \frac 1{2}\Biggl(\prod^n_{i=1}a_i \Biggr)^{1/2}\Biggl(\prod^n_{i=1}b_i \Biggr)^{1/2}\timesNEWLINE\]NEWLINE NEWLINE\[NEWLINE\times \Biggl(\int_E \prod^n _{i=1} (a_i -x_i)|D_1 \cdots D_n u(x)|^2 dx\Biggr)^{1/2} \Biggl(\int_F \prod^n _{i=1} (b_i -y_i)|D_1 \cdots D_n v(y)|^2 dx\Biggr)^{1/2},NEWLINE\]NEWLINE where \(E = \prod^n_{i=1}[0,a_i]\), \(F = \prod^n_{i=1}[0,b_i]\), \(a_i, b_i \in (0, \infty)\), \(u: E \to \Re\), \(v: F \to \Re\) for which the partial derivatives \(D_1 \cdots D_n u(x)\) and \(D_1 \cdots D_n v(y)\) exist and NEWLINE\[NEWLINEu(0,x_2, \dots,x_n) = u(x_1,0,x_3,\dots, x_n) = \cdots = u(x_1,\dots, x_{n-1},0) = 0NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(0,y_2, \dots, y_n) = u(y_1,0,y_3,\dots, y_n) = \cdots = u(y_1,\dots, y_{n-1},0) = 0.NEWLINE\]
0 references