The Hausdorff measure of a class of generalized Sierpiński sponges (Q2725218)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Hausdorff measure of a class of generalized Sierpiński sponges |
scientific article; zbMATH DE number 1618996
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Hausdorff measure of a class of generalized Sierpiński sponges |
scientific article; zbMATH DE number 1618996 |
Statements
10 July 2002
0 references
Hausdorff measure
0 references
generalized Sierpiński sponges
0 references
Sierpiński carpet
0 references
Hausdorff dimension
0 references
The Hausdorff measure of a class of generalized Sierpiński sponges (English)
0 references
In this note, the Hausdorff measure of a class of generalized Sierpiński sponges is determined. The main result is the NEWLINENEWLINENEWLINETheorem: We have NEWLINE\[NEWLINEH^{s(\lambda)}(S^m(\lambda))= (\sqrt m)^{s(\lambda)},\quad m\geq 3,\quad 0< \lambda\leq 2^{-m},NEWLINE\]NEWLINE where \(S^m(\lambda)= \bigcap^\infty_{n=0} E^m_n(\lambda)\) is the so-called generalized Sierpiński sponge (if \(m=2\), \(\lambda= {1\over 4}\), then it is the Sierpiński carpet), and \(s(\lambda)= \dim_{\text{H}} S^m(\lambda)\) is the Hausdorff dimension.NEWLINENEWLINENEWLINEThe proof is based on 9 lemmas and the mass distribution principle.
0 references