On generators of the group of projective collineations (Q2725244)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On generators of the group of projective collineations |
scientific article; zbMATH DE number 1619031
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On generators of the group of projective collineations |
scientific article; zbMATH DE number 1619031 |
Statements
9 December 2002
0 references
harmonic homology
0 references
projective collineation
0 references
On generators of the group of projective collineations (English)
0 references
The author shows: Every harmonic homology of the \(n\)-dimensional real or complex projective space is a product of \(j\leq 3\) harmonic homologies with fundamental hyperplanes containing one of two given points of the space. It is shown that in the case of \(n=2\) in some cases \(j=3\) factors are necessary. With results of \textit{K. Witczynski} [Demonstr. Math. 14, 1053-1075 (1981; Zbl 0512.51020)] upper bounds for the decomposition of projective collineations of the space into product of harmonic homologies follow.
0 references