A note on the \(q\)-integral and \(q\)-series (Q2729683)

From MaRDI portal





scientific article; zbMATH DE number 1623205
Language Label Description Also known as
English
A note on the \(q\)-integral and \(q\)-series
scientific article; zbMATH DE number 1623205

    Statements

    0 references
    0 references
    29 October 2001
    0 references
    \(q\)-integral
    0 references
    \(q\)-derivative
    0 references
    Fibonacci numbers
    0 references
    A note on the \(q\)-integral and \(q\)-series (English)
    0 references
    The authors calculate the integral NEWLINE\[NEWLINE \int\limits_0^1\int\limits_0^1\frac{(xy)^n(qx;q)_n(q^{- n}y;q)_\infty }{(qxy;q)_{n+1}(y;q)_\infty }d_qx\cdot d_qy NEWLINE\]NEWLINE understood in the sense of Jackson. Here \(q\in (0,1)\), \((x;q)_n=(1-x)(1-qx)\cdots (1-q^{n-1}x)\), and \((x;q)_\infty =\prod_{i=0}^\infty (1-xq^i)\). The result is used to find the value of \(\sum_{n=1}^\infty \frac{1}{F_nF_{n+1}}\) where \(\{F_n\}\) is the sequence of Fibonacci numbers. It is shown that the number \(\sum_{n=1}^\infty \frac{1}{F_nF_{n+1}}\) is irrational.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references