On multipliers from spaces of the Bergman type to the Hardy spaces in a polydisk (Q2730513)

From MaRDI portal





scientific article; zbMATH DE number 1631384
Language Label Description Also known as
English
On multipliers from spaces of the Bergman type to the Hardy spaces in a polydisk
scientific article; zbMATH DE number 1631384

    Statements

    8 August 2001
    0 references
    Bergman space
    0 references
    Hardy space
    0 references
    multiplier
    0 references
    0 references
    On multipliers from spaces of the Bergman type to the Hardy spaces in a polydisk (English)
    0 references
    The author describes coefficient multipliers of the Taylor series acting from the space of holomorphic functions on a polydisk \(U^n\) with the norm NEWLINE\[NEWLINE \|f\|=\left\{ \int_{T^n}\left( \int_{I^n}|f(R\xi)|^q(1- R)^{\alpha q-1}dR\right)^{p/q}dm_n(\xi)\right\}^{1/p}, NEWLINE\]NEWLINE where \(T^n\) is the skeleton of the polydisk, \(I=(0,1)\), \(0<p,q\leq 1\), \(0<\alpha <\infty\), \(m_n\) is the Lebesgue measure on \(T^n\), to the Hardy space \(H^s(U^n)\), \(\max (p,q)\leq s\leq 1\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references