Some nonuniform estimate in the central limit theorem (Q2730564)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some nonuniform estimate in the central limit theorem |
scientific article; zbMATH DE number 1631417
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some nonuniform estimate in the central limit theorem |
scientific article; zbMATH DE number 1631417 |
Statements
8 August 2001
0 references
nonuniform estimate
0 references
central limit theorem
0 references
independent identically distributed random variables
0 references
0.9617907
0 references
0 references
0.9467868
0 references
0.93983877
0 references
0.9383014
0 references
0.9379711
0 references
0.9315119
0 references
Some nonuniform estimate in the central limit theorem (English)
0 references
Let \(\xi_1,\ldots,\xi_{n},\ldots\) be a sequence of independent identically distributed random variables with the distribution function \(F(x)\) and \(M\xi_{i}=0,\;D\xi_{i}=1,\;i=1,2,\ldots\). Let \(F_{n}(x)=P\{(\xi_1+\ldots +\xi_{n})/\sqrt{n}<x\}\), let \(\Phi(x)\) be the standard normal law distribution function, and let \(\nu_3=\int_{-\infty}^{+\infty}|x^3||d(F(x)-\Phi(x))|\). Then NEWLINE\[NEWLINE|F_{n}(x)-\Phi(x)|\leq C{\displaystyle \max(\nu_3,\nu_3^{1/6})\over (1+|x|)^2 \sqrt{n}}NEWLINE\]NEWLINE for all \(n>3\), where \(C\) is a constant.
0 references