On the maximum real part of an entire Dirichlet series of (R) order zero (Q2731016)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the maximum real part of an entire Dirichlet series of (R) order zero |
scientific article; zbMATH DE number 1625358
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the maximum real part of an entire Dirichlet series of (R) order zero |
scientific article; zbMATH DE number 1625358 |
Statements
27 February 2002
0 references
On the maximum real part of an entire Dirichlet series of (R) order zero (English)
0 references
Let \(f(s)=\sum_{n=1}^\infty a_ne^{s\lambda_n}\) be an entire function (\(0\leq\lambda_n<\lambda_{n+1}\rightarrow+\infty\), \(\displaystyle\limsup_{n\to+\infty}(\log n)/\lambda_n<+\infty\)). The author presents formulas for the logarithmic order and type of \(f\) in terms of the function \(A(\sigma):=\sup_{t\in\mathbb R}|\text{Re}f(\sigma+it)|\).
0 references