A universal property of reflexive hereditarily indecomposable Banach spaces (Q2731915)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A universal property of reflexive hereditarily indecomposable Banach spaces |
scientific article; zbMATH DE number 1626790
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A universal property of reflexive hereditarily indecomposable Banach spaces |
scientific article; zbMATH DE number 1626790 |
Statements
A universal property of reflexive hereditarily indecomposable Banach spaces (English)
0 references
30 July 2001
0 references
reflexive Banach spaces
0 references
hereditarily indecomposable Banach spaces
0 references
universal Banach spaces
0 references
well-founded trees
0 references
complemented separable subspace
0 references
\textit{J. Bourgain} [Proc. Am. Math. Soc. 79, 241-246 (1980; Zbl 0438.46005)], proved that every separable Banach space \(X\) containing an isomorphic copy of any separable reflexive Banach space contains isomorphically any separable Banach space. The author shows that the same conclusion holds if \(X\) contains an isomorphic copy of any Hereditarily Indecomposable (H.I.) reflexive Banach space. A Banach space \(X\) is called H.I. if every infinite dimensional closed subspace of \(X\) admits no non-trivial decompositions into a direct sum of two Banach subspaces. Since, by a result of \textit{J. Lindenstrauss} [Bull. Am. Math. Soc. 72, 967-970 (1966; Zbl 0156.36403)], every non-separable reflexive Banach space contains a complemented separable subspace, it follows that a reflexive H.I. Banach space must be separable. For other results on H.I Banach spaces and historical comments, one can consult the paper by \textit{S. Argyros} and \textit{V. Felouzis} [J. Am. Math. Soc. 13, No. 2, 243-294 (2000; Zbl 0956.46014)]. The proof, based on some ideas from the Bourgain's paper (loc. cit.), uses the technique of well-founded tree constructions of Banach spaces.
0 references