On the admissible rules of intuitionistic propositional logic (Q2732279)

From MaRDI portal





scientific article; zbMATH DE number 1623522
Language Label Description Also known as
English
On the admissible rules of intuitionistic propositional logic
scientific article; zbMATH DE number 1623522

    Statements

    On the admissible rules of intuitionistic propositional logic (English)
    0 references
    0 references
    6 June 2002
    0 references
    intuitionistic logic
    0 references
    admissible rules
    0 references
    Kripke models
    0 references
    For \(A\), \(B\) propositional formulas, \(A|\mskip-6mu\sim B\) means that for each substitution \(\sigma\), \(\sigma(A)\) intuitionistically valid implies \(\sigma(B)\) intuitionistically valid. The author introduces the expression \(A\vartriangleright B\) for propositional formulas \(A\), \(B\), and defines the following system of derivations for such expressions:NEWLINENEWLINENEWLINEAxiom schemes:NEWLINENEWLINE\hskip 17mm \((A\to r\vee s)\vee t\vartriangleright(A\to r)\vee (A\to s)\vee (A\to p_1)\vee\cdots\vee\)NEWLINENEWLINE\hskip 17mm\qquad \(\vee(A\to p_n)\vee t\) for \(A= \bigwedge^n_{i=1} (p_i\to q_i)\),NEWLINENEWLINE\hskip 17mm \(A\vartriangleright B\quad\) where \((A\to B)\) is intuitionistically vaild.NEWLINENEWLINENEWLINERules:NEWLINENEWLINE\hskip 17mm \({C\vartriangleright A, C\vartriangleright B\over C\vartriangleright A\wedge B},\quad {A\vartriangleright B, B\vartriangleright C\over A\vartriangleright C}\).NEWLINENEWLINENEWLINEA Kripke model is called AR-model, if for every finite set \(\{u_1,\dots, u_n\}\) of nodes, there is a node \(u\) such that NEWLINE\[NEWLINEu\preceq u_1,\dots, u_n\wedge\forall u'\succ u\;(u_i\preceq u'\text{ for some }i\in \{1,\dots, n\}).NEWLINE\]NEWLINE It is shown that the following are equivalent:NEWLINENEWLINENEWLINEa) \(A|\mskip-6mu\sim B\).NEWLINENEWLINENEWLINEb) \(A\vartriangleright B\) is derivable.NEWLINENEWLINENEWLINEc) In every AR-model, \(A\) valid implies \(B\) valid.
    0 references
    0 references

    Identifiers