A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles (Q2732426)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles |
scientific article; zbMATH DE number 1623667
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles |
scientific article; zbMATH DE number 1623667 |
Statements
17 February 2002
0 references
nonsuperminimal surface
0 references
minimal surface
0 references
totally real immersion
0 references
constant Kähler angle
0 references
A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles (English)
0 references
Let \(x:\mathbb{R}^2\rightarrow S^6\) be a minimal and nonsuperminimal immersion with constant Kähler angle \(\theta\). The author proves that, if \(0<\theta<\pi\), then \(\theta=\frac{\pi}{2}\), that is, \(x\) is totally real and induces the trivial torus structure.
0 references