A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles (Q2732426)

From MaRDI portal





scientific article; zbMATH DE number 1623667
Language Label Description Also known as
English
A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles
scientific article; zbMATH DE number 1623667

    Statements

    17 February 2002
    0 references
    nonsuperminimal surface
    0 references
    minimal surface
    0 references
    totally real immersion
    0 references
    constant Kähler angle
    0 references
    0 references
    A uniqueness theorem for nonsuperminimal surfaces in \(S^6\) with constant Kähler angles (English)
    0 references
    Let \(x:\mathbb{R}^2\rightarrow S^6\) be a minimal and nonsuperminimal immersion with constant Kähler angle \(\theta\). The author proves that, if \(0<\theta<\pi\), then \(\theta=\frac{\pi}{2}\), that is, \(x\) is totally real and induces the trivial torus structure.
    0 references
    0 references

    Identifiers