Kleinian groups with real parameters (Q2732612)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Kleinian groups with real parameters |
scientific article; zbMATH DE number 1624590
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Kleinian groups with real parameters |
scientific article; zbMATH DE number 1624590 |
Statements
13 March 2002
0 references
Kleinian group
0 references
trace parameters
0 references
two-generator group
0 references
Kleinian groups with real parameters (English)
0 references
For a two-generator Möbius group \(\langle f,g \rangle\), there are three complex numbers as its parameters. In this paper the authors adopt the trace parameters \((\gamma (f,g), \beta (f), \beta (g))\), \(\beta (f)=\text{ tr}^2(f)-4\), \(\beta (g)=\text{ tr}^2(g)-4\), \(\gamma (f,g)=\text{ tr}([f,g])-2\), where \([f,g]\) denotes the commutator of \(f\) and \(g\). In order to investigate the space of the parameters for discrete groups the authors give a two-dimensional slice and study the real points of the space. For a discrete group \(\langle f,g \rangle\) with parameters \((\gamma, \beta, \beta')\), \(\gamma \neq \beta,0\), by using an elliptic element \(h\) of order two, the authors take another discrete group \(\langle f,h \rangle\) with parameters \((\gamma, \beta, -4)\) to reduce the parameters and give a necessary condition for a discrete group to satisfy \((\gamma, \beta)\in {\mathbb{R}}^2\).
0 references